
The Journal of Computing
Sciences in Colleges

Papers of the 26th Annual CCSC
Northeastern Conference

April 16th-17th, 2021
Ramapo College of New Jersey

Mahwah, NJ

Baochuan Lu, Editor Jeremiah W. Johnson, Regional Editor
Southwest Baptist University University of New Hampshire

Volume 36, Number 8 April 2021

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2

Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 5

CCSC National Partners 7

Welcome to the 2021 CCSC Northeastern Conference 8

Regional Committees — 2021 CCSC Northeastern Region 9

Reviewers — 2021 CCSC Northeastern Conference 10

Game On: Teaching Cybersecurity to Novices Through the Use
of a Serious Game 11

Devorah Kletenik, Alon Butbul, Daniel Chan, Deric Kwok, Matthew
LaSpina, City University of New York

Introducing Programming using Previewing 22
Chris Alvin, Furman University

vWaterLabs: Design and Characteristics of a Virtual Testbed for
Water-focused ICS Cybersecurity Education 33

Matthew J. Kirkland, Daniel Conte de Leon, University of Idaho,
Stu Steiner, Eastern Washington University

Short Courses in Computer Science 43
Christopher Healy, Andrea Tartaro, and Bryan Catron, Furman
University

A Web-Based Toolkit for Exploring Cryptography 53
Mikel Gjergji, Edmund A. Lamagna, University of Rhode Island

Students’ Consistency in Computational Modeling and Their
Academic Success 63

Elena Izotova, Jason Kiesling, Fred Martin, University of Massachusetts
Lowell

The Effects of Mixed Reality Immersion on Users’ Performance
and Perception of Multitasking While Performing Concurrent
Real World Tasks 73

Sarah North, Max North, David Garofalo, Kennesaw State University

3

Supporting Computing Accessibility Education Using
Experiential Learning Labs – Conference Tutorial 89

Saad Khan, Samuel Malachowsky, Daniel Krutz, Rochester Institute of
Technology

Computer Science and Robotics Using Single Board Computers
– Conference Tutorial 92

Kevin McCullen, Michael Walters, State University of New York College
at Plattsburgh

Short Modules for Introducing Heterogeneous Computing
– Conference Tutorial 95

David P. Bunde, Knox College, Apan Qasem, Philip Schielke,
Concordia University Texas

Building and Hacking an Exploitable WiFi Environment for Your
Classroom – Even for Remote Participants
– Conference Workshop 97

Ahmed Ibrahim, University of Pittsburgh

COVID-19 Data Analysis Applied to Computer Science Courses
– Faculty Poster 99

Kehan Gao, Sarah Tasneem, Eastern Connecticut State University

Cybersecurity Virtual Summer Workshop for Secondary School
Teachers: An Experience Report – Faculty Poster 101

Sarbani Banerjee, Neal Mazur, State University of New York at Buffalo
State

Exploring Direct Simulation Monte-Carlo Techniques for Science
Applications – Faculty Poster 104

Vladimir V. Riabov, Rivier University

Student-made Online Discrete Math Drills – Lightning Talk 107
Sebastiaan J. C. Joosten, Elham Mahdavy, Dartmouth College

Pedagogical Best Practices for Teaching Foundational Computer
Science Courses in Alignment with Employer Technical
Interviews – Panel Discussion 109

Robert J. Domanski, NYC Tech Talent Pipeline, City of New York

4

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing Sciences
in Colleges (along with the years of
expiration of their terms), as well as
members serving CCSC:
Karina Assiter, President (2022),
(802)387-7112,
karinaassiter@landmark.edu.
Chris Healy, Vice President (2022),
chris.healy@furman.edu, Computer
Science Department, 3300 Poinsett
Highway Greenville, SC 29613.
Baochuan Lu, Publications Chair
(2021), (417)328-1676, blu@sbuniv.edu,
Southwest Baptist University -
Department of Computer and
Information Sciences, 1600 University
Ave., Bolivar, MO 65613.
Brian Hare, Treasurer (2020),
(816)235-2362, hareb@umkc.edu,
University of Missouri-Kansas City,
School of Computing & Engineering,
450E Flarsheim Hall, 5110 Rockhill Rd.,
Kansas City MO 64110.
Cathy Bareiss, Membership Secretary
(2022),
cathy.bareiss@betheluniversity.edu,
Department of Mathematical
Engineering Sciences, 1001 Bethel
Circle, Mishawaka, IN 46545.
Judy Mullins, Central Plains
Representative (2023), Associate
Treasurer, (816)390-4386,
mullinsj@umkc.edu, UMKC, Retired.
Michael Flinn, Eastern Representative
(2023), mflinn@frostburg.edu,
Department of Computer Science
Information Technologies, Frostburg

State University, 101 Braddock Road,
Frostburg, MD 21532.
David R. Naugler, Midsouth
Representative(2022), (317) 456-2125,
dnaugler@semo.edu, 5293 Green Hills
Drive, Brownsburg IN 46112.
Grace Mirsky, Midwest
Representative(2023), gmirsky@ben.edu,
Mathematical and Computational
Sciences, 5700 College Rd. Lisle, IL
60532.
Lawrence D’Antonio, Northeastern
Representative (2022), (201)684-7714,
ldant@ramapo.edu, Computer Science
Department, Ramapo College of New
Jersey, Mahwah, NJ 07430.
Shereen Khoja, Northwestern
Representative(2021),
shereen@pacificu.edu, Computer
Science, 2043 College Way, Forest
Grove, OR 97116.
Mohamed Lotfy, Rocky Mountain
Representative (2022), Information
Systems & Technology Department,
College of Engineering & Technology,
Utah Valley University, Orem, UT
84058.
Tina Johnson, South Central
Representative (2021), (940)397-6201,
tina.johnson@mwsu.edu, Dept. of
Computer Science, Midwestern State
University, 3410 Taft Boulevard,
Wichita Falls, TX 76308.
Kevin Treu, Southeastern
Representative (2021), (864)294-3220,
kevin.treu@furman.edu, Furman
University, Dept of Computer Science,
Greenville, SC 29613.
Bryan Dixon, Southwestern
Representative (2023), (530)898-4864,

5

bcdixon@csuchico.edu, Computer
Science Department, California State
University, Chico, Chico, CA
95929-0410.

Serving the CCSC: These members
are serving in positions as indicated:
Bin Peng, Associate Editor, (816)
584-6884, bin.peng@park.edu, Park
University - Department of Computer
Science and Information Systems, 8700
NW River Park Drive, Parkville, MO
64152.
Shereen Khoja, Comptroller,
(503)352-2008, shereen@pacificu.edu,

MSC 2615, Pacific University, Forest
Grove, OR 97116.
Elizabeth Adams, National Partners
Chair, adamses@jmu.edu, James
Madison University, 11520 Lockhart
Place, Silver Spring, MD 20902.
Megan Thomas, Membership System
Administrator, (209)667-3584,
mthomas@cs.csustan.edu, Dept. of
Computer Science, CSU Stanislaus, One
University Circle, Turlock, CA 95382.
Deborah Hwang, Webmaster,
(812)488-2193, hwang@evansville.edu,
Electrical Engr. & Computer Science,
University of Evansville, 1800 Lincoln
Ave., Evansville, IN 47722.

6

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Platinum Partner
Turingscraft

Google for Education
GitHub

NSF – National Science Foundation

Silver Partners
zyBooks

Bronze Partners
National Center for Women and Information Technology

Teradata
Mercury Learning and Information

Mercy College

7

Welcome to the 2021 CCSC Northeastern Conference

Welcome to the Twenty Fifth Annual Consortium for Computing Sciences
in Colleges Northeast Region Conference. This year’s conference is being held
virtually. We’d like to thank everyone who has been involved with this confer-
ence since its inception at the University of Hartford in April 1996.

This year our program features an outstanding invited speaker, Julia Stoy-
anovich of New York University. A variety of topics will be covered by the
paper presentations, workshops, panels, tutorials, lightning talks, and faculty
and student research posters.

A special thanks goes out to the many volunteers who have worked on our
conference. This includes the conference committee, the CCSCNE board, and
the conference reviewers. You will find their names listed in the committee
lists.

The past year has been a rough time for all of us. The 2020 conference had
to be cancelled. For this year’s conference, out of 12 paper submissions, 7 were
accepted for an acceptance rate of 58.3%.

We hope that you enjoy the conference and find it informative and engaging.
We look forward to seeing you in 2022 at Pace University in Pleasantville, NY.

Lawrence D’Antonio
Benjamin Fine

Ramapo College of New Jersey
Conference Co-Chairs

8

2021 CCSC Northeastern Conference Steering
Committee

Lawrence D’Antonio, Conference Chair Ramapo College of New Jersey
Ben Fine, Conference Chair . Ramapo College
Jim Teresco, Program Chair . Siena College
Ali Erkan, Papers Chair . Ithaca College
Yana Kortsarts, Papers Chair . Widener University
Susan Imberman, Lightning Talks Chair . . . The City University of New York
Joan DeBello, Panels Chair . St. John’s University
Bonnie MacKellar, Tutorials and Workshops Chair St. John’s University
Ting Liu, Tutorials and Workshops Chair .Siena College
Dan Rogers, Faculty Posters Chair The College at Brockport
Ingrid Russell, Speakers Chair . University of Hartford
Mike Gousie, Speakers ChairWheaton College (Massachusetts)
Karl Wurst, Student Unconference ChairWorcester State University
Darren Lim, Encore Chair . Siena College
Sandeep Mitra, Undergraduate Posters ChairThe College at Brockport
Alice Fischer, Undergraduate Posters Chair University of New Haven
Aparna Mahadev, Undergraduate Posters Chair . .Worcester State University
Stefan Christov, Undergraduate Posters Chair Quinnipiac University
Liberty Page, Undergraduate Posters Chair University of New Haven
Mark Hoffman, Registration Chair . Quinnipiac University
Rick Kline, Registration Chair . Pace University
Frank Ford, Programming Contest . Providence College
Del Hart, Programming Contest . SUNY Plattsburgh
Scott Frees, Career Fair Coordinator . Ramapo College
Kevin McCullen, Vendors Chair . SUNY Plattsburgh

Regional Board — 2021 CCSC Northeastern Region

Lawrence D’Antonio, Board Representative . . Ramapo College of New Jersey
Jeremiah Johnson, Editor University of New Hampshire at Manchester
Mark Hoffman, Registrar . Quinnipiac University
Adrian Ionescu, Treasurer .Wagner College
Stoney Jackson, Webmaster Western New England University
Ingrid Russell, Secretary .University of Hartford

9

Reviewers — 2021 CCSC Northeastern Conference

Chris Alvin . Furman University
Kailash Chandra . Pittsburg
Jami Cotler . Siena College
Lawrence D’Antonio .Ramapo College
Dan DiTursi .Siena College
Martin Gagne . Wheaton College
Alessio Gaspar . University of South Florida Polytechnic
Michael Gousie .Wheaton College (MA)
Scott Harrison . St. John Fisher College
Delbert Hart . SUNY Plattsburgh
Ahmed Ibrahim . University of Pittsburgh
William Joel . Graphics Research Group / WCSU
Jeremiah Johnson . University of New Hampshire
Zach Kissel . Merrimack College
Devorah Kletenik . City University of New York
Daniel Krutz .Rochester Institute of Technology
Ting Liu . Siena college
Sriharsha Mallapuram . Plymouth State University
Christopher Martinez . University of New Haven
Robert McCloskey . University of Scranton
Kevin McCullen . SUNY Plattsburgh
Pat Ormond . Utah Valley University
Greta Pangborn . Saint Michael’s College
Sofya Poger . Felician University
Christine Reilly . Skidmore College
Daniel Rogers .The College at Brockport
Tania Roy . New College of Florida
Christelle Scharff .Pace University
Gurmukh Singh . SUNY at Fredonia, NY
Marc Waldman .Manhattan College
Yang Wang .La Salle University

10

Game On: Teaching Cybersecurity to
Novices Through the Use of a Serious

Game∗

Devorah Kletenik, Alon Butbul, Daniel Chan
Deric Kwok, Matthew LaSpina

Department of Computer and Information Science
Brooklyn College, City University of New York

Brooklyn, NY 11210
kletenik@sci.brooklyn.cuny.edu

Abstract

We report on the creation of an educational serious game to teach
basic cybersecurity concepts. Cyber Secured uses engaging gameplay and
challenges to educate students about concepts such as phishing, malware,
encryption and passwords. This game was evaluated on introductory
students in three sections of an e-commerce course. Our observations
demonstrated statistically significant learning gains as well as continued
retention of the material. We also saw evidence of increased interest
in cybersecurity, and reports of positive attitudes towards the use of
this game to teach and assess cybersecurity material. The results of
our work suggest that Cyber Secured is a useful tool to educate about
cybersecurity, and we have made our game freely available.

1 Introduction

Cybercrime poses a threat to both our society and economy. An increasing
awareness of human users as the “weakest link” compels building awareness
and educating Internet users about cybersecurity. Many different types of
training sessions and exercises have been conducted on a variety of Internet

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

11

users. In this work, we discuss our use of a serious game to educate college
students who are new to the field of cybersecurity.

Over the past two decades, there has been a growing interest in creating
educational “serious games” that help students learn by offering an engaging
alternative or supplement to traditional lectures. Research suggests that se-
rious games are superior at teaching subject matter compared to traditional
means of instruction and increase long-term retention and student motivation
(e.g. [7, 12]). A number of serious games have been created to teach cyber-
security concepts, including digital games, card games and Capture the Flag
competitions. These games offer engaging ways to teach about cybersecurity
and increase student interest.

However, many of these games are geared towards those who are already
knowledgeable about cybersecurity. When novices to the field are overly chal-
lenged by cybersecurity games, they may have poor learning outcomes and
possibly exhibit counteractive decreased interest in cybersecurity [8]; as a re-
sult, it is important to achieve game balance by matching the game topics to
the players’ backgrounds. We address this problem by creating a game geared
specifically to cybersecurity beginners; in fact, to students who may not have
any computer science background at all. Our goal is not to educate the next
generation of security professionals, but to inform lay people about online risks,
spark interest in the topic and motivate learning more.

2 Related Work

Perhaps the most well-known cybersecurity game is the CyberCIEGE game.
Players assume the role of an IT decision maker for a small business in a 3D
office environment. Scenarios challenge the players to make security decisions
and depict realistic tradeoffs and risk management. The scenarios educate
about concepts such as encryption, DMZ, and patches [5]. CyberCIEGE has
been tested in a number of computer security courses (e.g. [10]).

Another cybersecurity game, Cash City, teaches about cybersecurity in a
digital Monopoly-style game. The game was evaluated on first-year IT students
and showed modest improvement for the game-playing group over a control
group [6]. [d0x3d!]1 is a tabletop card game that is open-source and available
for downloading and remixing. It has been assessed in a number of field tests
and has received positive feedback [2]. Several games have been created to
specifically focus on phishing awareness, e.g. [9, 11, 1]. A survey of cybersecu-
rity games, both those reported about in academic literature and those created
by private industry, is discussed in [4].

1http://d0x3d.com/d0x3d/welcome.html

12

3 The Game

In the game, which is loosely based on the Game Spent2, the player has been
hired as an IT specialist. S/he must then navigate through routine challenges
and learn along the way: each “month” in the game contains specific learning
modules which the player must successfully navigate, based on the learning
goals summarized in Table 1. Players are given a brief tutorial and then have
to use the information to succeed at a related quiz or challenge: for example,
crafting a password and then seeing how strong it is, determining whether
an email is a phishing scheme, encrypting and decrypting using a variety of
encryption methods, and making various security choices for the company (e.g.
choice of backups for sensitive data), as well as short multiple-choice quizzes.

Table 1: Learning Goals of the Game

passwords creation of passwords that are robust against dictionary attacks
data backups importance of, different methods and advantages and disadvan-

tages
phishing ability to discern between safe and unsafe emails
malware basic types of malware, characteristics, and what to do
encryption basic idea, Caesar cipher & drawbacks, one-time pad and RSA

Along the way, the player is also informed about random events that happen
to the company, both negative and positive. In addition to making the game
more fun, the events serve as extra learning tools. For example, the hard drive
may fail, and the impact of that event will depend on whether the player had
previously selected to backup the data. Similarly, players who have chosen
Dropbox as cloud storage may be randomly informed of a Dropbox hacking
that steals their data. Some of the random events include: firmware updates
to patch security holes; hard drive failure; a simulated Equifax data breach.

Player success is calculated through a combination of “network power,"
which is the quantitative scorekeeping system, and error rate. The error rate
influences the probability of negative events happening to the player and can be
decreased through successful completion of learning challenges. To be extra-
friendly to novices, we allow them to select the challenge level of the game
(Figure 2a). An “IT Senior” provides advice as necessary (e.g. Figures 2c and
2d). The game is published as a WebGL, so that it is playable in the browser
with no need for installation.

2http://playspent.org/

13

Table 2: Game pictures

4 Impact of the Game

4.1 Overview

Cyber Secured was piloted in the Electronic Commerce course offered at our
US urban public college. The course is co-listed under the Computer Science
and Business departments and the students are fairly evenly divided between
the two departments. Most of the CS students (and typically all of the Busi-
ness students) are new to the field of computer science, and specifically to
cybersecurity.

The course covers the basic technological and business background of e-
commerce, including the development of the Internet and the WWW, business
strategies, cybersecurity, and marketing. In the cybersecurity portion of the
course, the goal is to give a general overview of the insecurity of the Internet,
educate about security threats and explain the high-level concepts behind en-
cryption. Cyber Secured was designed to help teach these basic topics to this
pool of beginners.

To determine the potential of Cyber Secured to improve students’ knowledge
of cybersecurity and to get student feedback about the game, students taking
the e-commerce course were offered the opportunity to play Cyber Secured for
extra credit on a homework assignment. In total, 118 students were presented
with this offer, comprising three sections of the e-commerce course, one online
and two traditional in-class courses: an in-class section in the Spring (hence-

14

forth, Class1), and an in-class section (henceforth, Class2) and an online section
(henceforth, Online), both in the following Fall. The students were briefed on
the study and informed consent was obtained. They were then asked to take
a pre-test measuring their knowledge of basic cybersecurity concepts, play the
game, and take a post-test. The pre- and post-tests consisted of 13 questions
covering passwords, phishing, malware, and encryption; to save space, we give
only a sample of the questions in Figure 1. Questions on pre- and post-tests
were highly similar. The pre- and post-tests were administered through Google
Forms. The game was posted online3.

Figure 1: Sample post-test questions (correct answers are underlined)

1. Which of these passwords is the strongest?
(a) ILoveSchool!
(b) hello!8
(c) monkey
(d) YaThink?
(e) I don’t know

Briefly explain your answer.
2. A phishing email is:

(a) an email that has a virus inside
(b) an email that tries to solicit sensitive information from you
(c) an email that has spyware attached
(d) an email that automatically gets sent to all of your email contacts
(e) I don’t know

3. If you’re unsure if an email from a specific site is a phishing attempt,
you should
(a) click on the link provided
(b) type the URL of the site directly into your browser
(c) reply to the email to see if it bounces back
(d) open the attachments provided
(e) I don’t know

4. Encrypt the following text, using a Caesar cipher with a key value of
2: hello. jgnnq

5. Decrypt the following text, using a Caesar cipher with a key value of
3: fbehu. cyber.

6. Is a Caesar cipher a strong encryption method? Explain your answer
briefly.

Some changes were made to the game between the Spring and Fall semesters,
including adding content about one-time pads and RSA encryption. To keep
this study consistent between the cohorts, we used the same pre- and post-tests
in the Fall semester as in the Spring, omitting questions about the new content.

3https://cybersecured.itch.io/cyber-secured-2020

15

4.2 Participants

In Class1, 40 students were offered the opportunity to participate. Of the 40
students, 23 took the pre-test, played the game and took the post-test (12 male
and 11 female). We denote this group as Game (G). The other 17 students are
our Control group (C); of these, 14 did not take the pre-test or play the game
and three took the pre-test but did not play the game or take the post-test.
Class 2 had 40 students. Of these, thirty chose to participate by playing and
taking both tests (Game, 21 male and 9 female) and ten students did not take
the pre-test or play the game (Control). Finally, of the 38 students in the
Online course, 22 were in group Game (12 male, 10 female) and 16 did not
take the pre-test or play the game (Control).

4.3 Pre-test to Post-test

We give the mean and median for both tests for the 75 students who played
the game below in Table 3. Both the pre- and post- tests were scored out of 13
points, and the scores are given both as raw scores and as percentages. Scores
are presented for each of the individual sections as well as the combined group
of all students. The average scores on the post-test demonstrate statistically
significant increases compared to the pre-tests (using a paired t-test, α = .05,
p < .001 for all three sections).4

Table 3: Game Quizzes, Group Game

Average Score Median
Class1 (n = 23) Pre-test 7.7/13 (59%) 7.3/13 (57%)

Post-test 10.6/13 (82%) 12/13 (92%)
Class2 (n = 30) Pre-test 9.0/13 (69%) 9/13 (69%)

Post-test 10.6/13 (81%) 11/13 (85%)
Online (n = 22) Pre-test 6.0/13 (46%) 6/13 (46%)

Post-test 8.2/13 (63%) 8/13 (62%)
Combined (n = 75) Pre-test 7.7/13 (59%) 8/13 (62%)

Post-test 9.9/13 (76%) 10/13 (77%)

4.4 Final Exam Scores

To measure retention and transference, we looked at performance on the final
exam. All sections of the course had questions on the final exam that related
to the cybersecurity concepts covered in the game (e.g. malware, phishing,
and encryption). The two Class groups had similar finals, with the questions

4We note that the scores on the pre- and post-tests were significantly less for the Online
group than the corresponding scores in both Class groups (p < .01 for all). We do not offer
conjectures to explain this, particularly due to such a small sample size.

16

about security (Class Security-Questions, or C-SQ) worth 26 points total; the
online final had Online-Security Questions (O-SQ) worth a total of 17 points.
The questions on the final give us a way to measure the impact of the game
on longer-term retention and knowledge, despite not corresponding closely to
the questions in the pre-/post-tests.

In Table 4, we give the average scores of the pre-tests and the security
questions on the final for each section, given as percentages of total possible
points. We also calculated the difference between the pre-test score and the
score on the final security questions; the average of those differences is given
in the last column on the table. We analyzed the pre-test score and final SQ
score for each student in the Game groups using a paired t-test. The final SQ
scores were significantly greater than the pre-test scores (p ≤ .001) for each
Game group, indicating retention of the material taught (though, of course,
other factors may also have contributed).

Table 4: Average Pre-test and SQ Scores

Pre-test Final SQ Difference
Class1 (n = 23) 59% 76% +16%
Class2 (n = 30) 69% 79% +10%
Online (n = 22) 45% 77% +32%

We also compared the fi-
nal SQ scores of those who
played the game to their
classmates who did not. In
Table 5, we give the average
scores for the security ques-
tions (SQ) for the Class and

Online groups. The last column gives the grade for the “Rest of the Final”
(ROF): the non-cybersecurity questions on the final (as a percentage of the
remaining 74 and 83 points, respectively), to serve as a control group for the
SQ.

In both the Class and the Online Control groups, the scores on the SQ lag
considerably behind the scores on the ROF. This is consistent with our obser-
vation that students find cybersecurity of the most difficult topics in the course.
In contrast, scores on SQ for the Game groups were similar to their ROF scores,
in addition to being significantly higher than Control-SQ scores. This suggests
that the game helped students understand and retain the material.

However, it is difficult to draw any concrete conclusions about the effect of
the game. The differences in scores for the SQ were not statistically different
between the Game groups and Control groups for the Class groups and likewise,
the ROF scores were also not significantly different. In the Online group, on
the other hand, there was a statistically significant difference between the SQ
scores of Game and Control groups, but also a statistically significant difference
between ROF scores (p < .001, p = .003, respectively). Hence, while we
find the results of the final questions encouraging, we see possible evidence
of a selection bias indicating that the differences in SQ scores may have been
(at least partially) caused by underlying differences in the Game and Control

17

groups. It is also possible that our small sample size does not allow us to
adequately study the effects on the final.

Table 5: Average Scores on Final SQ

SQ ROF
Class1: Control(n = 17) 63% 73%
Class2: Control (n = 10) 63% 67%
Combined Class Control: (n = 27) 63% 70%
Class1: Game (n = 23) 76% 79%
Class2: Game (n = 30) 79% 77 %
Combined Class Game: (n = 53) 77% 78%
Online: Control(n = 16) 53% 66%
Online: Game (n = 22) 76% 77%

4.5 Interest in Cybersecurity

In addition to increasing knowledge about cybersecurity, another goal of our
game was to increase interest in cybersecurity, with the goal of students finding
the topic intriguing and relevant. We attempted to ascertain whether that goal
was met. All three finals contained a two-point question that asked “In your
opinion, what was the most interesting / informative / useful topic that we
covered? Briefly explain your answer.” This question solicits general feedback
about topics that interested students. We use the responses to estimate student
interest in cybersecurity.

Table 6: Cybersecurity response rate

Control Game
Class1 44% 54%
Class2 25% 56%
Online 23% 53%

Combined 33% 54%

Out of the 118 students in the three
sections of this course, 108 responded to
the question. For each of the responses,
we tallied up which students chose cy-
bersecurity, or any of its sub-topics (e.g.
malware, phishing, encryption) vs. other
topics in the course. We give the cyber-
security response rates for each section in

Table 6. In each section of the course, more than half of the Game group chose
cybersecurity as their “favorite” course topic. The same was not true of the
Control group, whose cybersecurity responses were much less frequent. The
difference in the response rate was statistically significant (p = .04). We see
this as an indication that playing the game increased interest in cybersecurity.
(Some of the Game responses made that explicit, e.g. “The game really helped
me delve into the topic.”)

We also looked at response rates to this question from a previous semester,
in which cybersecurity was taught but the game was not offered as a resource.

18

That rate gives a baseline of cybersecurity interest among our students. The
response rate of cybersecurity topics in the past was 38%; the difference be-
tween that rate and the response rate of the Game groups was statistically
significant (p = .049). This suggests that the game actually increased inter-
est in cybersecurity, and that the effects that we observed between Game and
Control groups were not merely selection bias.

4.6 Qualitative Survey Results

The post-test also included qualitatives survey questions. The first four were
based on [3] to measure the levels of intrinsic motivation of the students. The
second three questions measured the students’ engagement with the game. All
seven questions used a 5-point Likert scale, labeled from “strongly disagree”
(1) to “strongly agree” (5). An additional two questions asked for students’
feedback on the game. The results of the rating questions are shown in Table 7.
(To save space, we condense the intrinsic motivation questions.) In the second
column, we give the average scores, across all sections. In the third column,
we give the percentage of responses that indicate agreement; i.e. either “agree”
or “strongly agree” (≥ 4).

Table 7: Qualitative Survey Responses

Question average percent agreeing
I played this game because I found it interesting 3.6 55%
I would play this game for fun 2.9 29%
I would play this game to learn about security 4.3 82%
I would play this game to help assess my knowledge of security 4.2 82%

The average score across all four intrinsic motivation questions was 3.3,
indicative of slightly above-average motivation. Although students were neutral
about the “fun” qualities of the game, the responses indicate strong agreement
with the educational and assessment qualities of the game; over 80% of the
students said that they would play this game to learn about and assess their
knowledge of security.

The survey also included two-open ended questions for feedback: Please tell
us at least two things that you did not like about the game or think should be
changed and Please tell us at least two things that you liked about the game –
things we should not change. These questions were not required fields; 67 (89%)
of students chose to answer them. We hand-tagged the comments to identify
common themes between answers; comments could be tagged with multiple
tags. In total, we identified 16 “don’t like” and 15 “like” tags. On the “like”
end, 45% of students who answered commented about the educational benefits
of the game, with comments such as “I like that it taught you about the different
topics while having fun; A great way to learn about the topic. Different in a

19

good way; The content was very informative!; The game was very interesting
and informative. It would be great if there were more games like this to teach
students about the topics in e-commerce.” 18% of the responses commented on
the fun aspect of the game: “I enjoyed playing until the 12 months were over;
It felt very much like a regular game; The game was creative and unique unlike
most browser games.”

On the “don’t like” side, 15% of the responses noted that the game was
confusing in some way (“Make the instructions a bit clearer; the game error
level was confusing at first”); 12% wanted the graphics to be improved (“I wish
the game was a bit more colorful; the graphics could be improved”) while 12%
could not think of any improvements necessary (“Nothing that I didn’t like;
None. I liked the game”). The most frequent comment (16%) was that the
game was too long (“The game felt long; it was kinda long; I think the game
is a little bit too long to play”). As noted in Section 4.1, we added two new
encryption modules between Class1’s participation and that of Class2/Online.
Responses about length were far more prevalent in Class2/Online surveys, and
slightly lower levels of interest in the game were reported in those surveys as
well. We suspect that the additional modules may have made the game too
long for students and decreased their interest in playing. One of our plans is
to make these modules optional, so that students can choose to skip them.

5 Discussion and Conclusions

Although our sample size is small, our results are encouraging and show that
students who play Cyber Secured demonstrate educational gains compared to
students who did not play. Moreover, student feedback suggests that students
themselves recognize the value of the game as a tool for learning about cyberse-
curity and several students asked for us to create similar games for other course
topics. We think that this game has potential to be helpful to students who
are new to cybersecurity and plan to continue to develop the game by making
some modules optional as well as by making the game more visually appealing
and fun to play by speeding up slow-loading text, clarifying instructions and
improving the graphics. We would also like to add analytics so that we can
see with which topics students struggle, and we plan to then conduct a larger
study of its effects on a larger sample of students.

This game was created by a team of undergraduate CS students. This
project was doubly enriching, offering educational benefits for both the students
who created the game and those who played it. Besides improving their skills
in Unity game programming, the students who developed the game learned
to manage a complex code base, to work as a team, and to design a pleasing
user experience. This game is thus a strong representation of “of students for
students.”

20

The game is available for free online at https://cybersecured.itch.io/
cyber-secured-2020 as a resource for other instructors who teach cybersecu-
rity to novices. Because of the introductory nature of the game, it can be used
in a variety of courses, including General Education courses, CS0 courses and
other CS courses for non-majors. The game can also be a meaningful addition
to high school CS courses. Cyber Secured can be used as a standalone course
activity to raise awareness about cybersecurity, as a means of assessing student
knowledge, or as an introduction to the topic. It can also be used to motivate
class discussions about cybersecurity, as well as debates about the ethical issues
that surround cybersecurity.

References

[1] Nalin Asanka Gamagedara Arachchilage, Steve Love, and Konstantin Beznosov. Phish-
ing threat avoidance behaviour: An empirical investigation. Computers in Human
Behavior, 60:185–197, 2016.

[2] Mark Gondree and Zachary NJ Peterson. Valuing security by getting [d0x3d!]: Ex-
periences with a network security board game. In 6th Workshop on Cyber Security
Experimentation and Test, 2013.

[3] Frédéric Guay, Robert J Vallerand, and Céline Blanchard. On the assessment of sit-
uational intrinsic and extrinsic motivation: The situational motivation scale (SIMS).
Motivation and Emotion, 24(3):175–213, 2000.

[4] Maurice Hendrix, Ali Al-Sherbaz, and Bloom Victoria. Game based cyber security
training: are serious games suitable for cyber security training? International Journal
of Serious Games, 3(1):53–61, 2016.

[5] Cynthia E Irvine, Michael F Thompson, and Ken Allen. CyberCIEGE: gaming for
information assurance. IEEE Security & Privacy, 3(3):61–64, 2005.

[6] Thomas Monk, Johan Van Niekerk, and Rossouw von Solms. Sweetening the medicine:
educating users about information security by means of game play. In Proceedings of the
2010 Annual Research Conference of the South African Institute of Computer Scientists
and Information Technologists, pages 193–200. ACM, 2010.

[7] Marina Papastergiou. Digital game-based learning in high school computer science
education: Impact on educational effectiveness and student motivation. Computers &
Education, 52(1):1–12, 2009.

[8] Portia Pusey, David H Tobey, and Ralph Soule. An argument for game balance: Improv-
ing student engagement by matching difficulty level with learner readiness. In 3GSE,
2014.

[9] Steve Sheng, Bryant Magnien, Ponnurangam Kumaraguru, Alessandro Acquisti, Lor-
rie Faith Cranor, Jason Hong, and Elizabeth Nunge. Anti-phishing Phil: the design and
evaluation of a game that teaches people not to fall for phish. In Proceedings of the 3rd
symposium on Usable privacy and security, pages 88–99. ACM, 2007.

[10] Michael Thompson and Cynthia Irvine. Active learning with the CyberCIEGE video
game. In Proceedings of the 4th Conference on Cyber Security Experimentation and
Test, 2011.

[11] Shian-Shyong Tseng, Kai-Yuan Chen, Tsung-Ju Lee, and Jui-Feng Weng. Automatic
content generation for anti-phishing education game. In Electrical and Control Engi-
neering (ICECE), 2011 International Conference on, pages 6390–6394, 2011.

[12] Pieter Wouters, Christof Van Nimwegen, Herre Van Oostendorp, and Erik D Van
Der Spek. A meta-analysis of the cognitive and motivational effects of serious games.
Journal of Educational Psychology, 105(2):249–265, 2013.

21

Introducing Programming using
Previewing∗

Chris Alvin
Computer Science Department

Furman University
Greenville, SC 29613

calvin@furman.edu

Abstract

We want students to begin taking ownership of programming lan-
guage concepts in a CS1 class as soon as possible; however, it can be
difficult to provide a meaningful and interactive activity on the first
day of class. We describe a programming activity that attempts to im-
merse students in source code as a way to introduce basic programming
concepts as well as bridge their prior knowledge with future course con-
tent. This paper introduces the idea of a pre-programming activity to the
computing community, describes our interactive laboratory activity, and
describes short-term analyses of the effectiveness of our activity.

1 Introduction

The process of learning to program may be described by two core components:
(1) developing an algorithmic solution and (2) expressing an algorithm in a
language foreign to the student. Individually and collectively, these tasks are
challenging in a CS1 course setting. For a student with no programming expe-
rience, a first course in programming may be intimidating. While it is our goal
as computing educators to engage students in algorithmic problem solving, it
is also our goal to demystify the idea of source code. Simply, we want stu-
dents to write transparent source code for themselves and for others. As part
of this process, we also want students to understand that documenting source

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

22

code through comments is a strong communication tool that can illuminate an
algorithm.

In this work, we discuss a first laboratory activity for CS1 that serves as
an immersive, "previewing"-style learning device that can be administered on
the first day of class. Previewing (including, ‘pre-reading’) is a well-known
concept in K-12 education and can be described as any activity performed
before reading that is meant to assist a learner in understanding a text. Such
preparation activities are what help a learner connect new information with
what they already know; hence, learners are more likely to take ownership of
those new concepts. Pedagogically, our pre-programming activity has several
goals:

• Introduce basic functionality of the Integrated Development Environment
(IDE);

• Introduce select programming vocabulary and link that vocabulary to
existing knowledge;

• Engage students in syntax and semantics of the target language while
reinforcing mathematical norms of the language;

• Introduce control flow with selection and functions for modularity;
• Illustrate the level of detail required in source code;
• Demonstrate the importance of communicating with the reader (and

yourself) through rich, yet reasonable comments; and
• Convey that source code may be understood using a combination of good

documentation and precise code statements.
These goals are lofty; however, we show that they are attainable for most

students using a pre-programming activity.

2 The Pre-Programming Activity

Motivation. In our experiences, a typical introductory programming class con-
sists of students with a wide variety of backgrounds. Even students who have
taken Advanced Placement courses in high school evidence a wide variance
in their knowledge of syntax and semantics of Java or another programming
language. In a CS1 course, most students are not often able to communicate
well (written or verbal) efficient and/or effective algorithms. This variability
in student background can help to create an interesting dynamic in the class-
room, both positive and negative. For example, it is easy to understand when a
student with some background in programming excels early in an introductory
programming course, but loses steam with more complex material later in the
course.

We use Python in our CS1 course. Since Python deviates sharply from the

23

syntax and semantics of Java and other programming languages students may
have experienced prior to the course (e.g., Javascript, R, C#, etc.), experienced
students often have much to learn on the first day of the course. While intro-
ducing aspects of programming to students is important, our pre-programming
activity immediately engages all students using a common activity.

We have three overarching goals for our pre-programming activity. First, it
provides a common experience for all students in the course; we can thus make
continued reference to it for many weeks into the course. Our second goal is
to provide a balanced knowledge bridge into course content for students with
or without prior programming knowledge. Last, but not least, the activity
introduces some fundamental programming concepts as well as a sample of
programming language constructs.

The Activity. The pre-programming activity [1] consists of 49 questions.
Many of the questions are framed as (1) carry out an operation and (2) report
the result. Several other questions ask students to generalize their findings.
The activity takes between 45-120 minutes depending on prior student experi-
ence, comfort with new software, (mis)interpretation of instructions, etc. When
administered, an instructor and a lab aide were available for guidance.

IDE. The activity begins with an overview of the IDE. Using an annotated
screenshot of the IDE interface, we describe the editor and shell (or console). As
a segue, the activity mentions that Python is an interpreted language (without
further description) thus facilitating interactivity with the shell: “Hence, you
can enter an instruction into the shell and it will execute immediately.”

Evaluating expressions. To engage students as quickly as possible, the next
sequence of questions asks them to investigate operators. Students are asked to
evaluate 2**4 in the shell and then asked to infer the function of the ** opera-
tor. Students then interact with + applied to strings by evaluating "Sm"+"ile!"
and 'Fro'+'wn.'. Students are asked if there seems to be a distinction between
single quotes (') and double quotes ("); we find this detailed question important
to distinguish Python from Java for students with experience. We then combine
the idea of mathematical and string expressions by having students evaluate
print statements such as print(3*4-5) compared to print("3*4-5"). Our
goal in introducing these concepts is not complete coverage, but to provide an
intuitive introduction to these fundamentals concepts.

Indentation. To demonstrate the importance of indentation in Python, we
present the code in Figure 1 [1], but with all vertical whitespace and all leading
indentations removed. It is important to introduce students to Python error
messages in our IDE: “expected an indented block” (Line 9 in the unindented
code). However, students also begin to see, by example, that indentation in
the Python language is critical to program execution. Last, students may rec-
ognize the difficulty in interpreting dense code in a holistic manner. That is,

24

Figure 1: Version 1 of the roots function source code.

reading code without ‘quality of life’ indentation and whitespace can make code
needlessly complex to parse, understand, and modify.

Code comprehension. The rest of the lab is based on two versions of code
that computes and prints roots of a quadratic polynomial via the quadratic
formula (Figure 1 and Figure 2 [1]); for brevity, we omit some calls to roots
in test in Figure 1 and all invocations of roots in Figure 2. We chose an
algebraic concept since, in theory, it would be recognizable to students although
we understand some student hesitancy toward mathematics. In the activity, we
remind students that the quadratic formula (x = −b±

√
b2−4ac
2a) is used to solve

quadratic polynomial equations of the form ax2 + bx + c = 0 where a, b, c are
real numbers as well as the fact that the discriminant refers to the expression

25

under the radical (b2 − 4ac).
Students import and execute the code in Figure 1 and then are asked to

consider the following concepts by making temporary or permanent changes to
the code. We list some of the concepts here; later, we describe a few in greater
detail.

• Comments with # and docstring comments with """.
• Legal string literals by balancing ".
• Floating-point numbers compared to integers.
• The absolute value function abs.
• Using vertical and horizontal whitespace for clarity: (e.g., 2 * a versus
2*a).

• Modules, in particular, the math module.
• Escaped characters, including tab and newline.
• Line by line code traversal with different input values.
• Function parameters as local variables.
• Control flow with selection statements.

Comments and help. In a sequence of questions, we ask students to intuit
the purpose of comments as well as commenting syntax in Python. In par-
ticular, we ask students to remove a # character, report any problems, and
speculate as to whether the interpreter ignores the succeeding text. Students
then make a conjecture as to the purpose of comments.

Students then explore docstring comments; our style is influenced by Java
docstring comments. We have found that enforcing this format communicates
the critical elements of a function and provides a clear segue into the next course
(which teaches Java). Students explore one use of docstring comments by using
the built-in Python help function in the shell (help(roots)). Further, students
consider the predefined absolute value function (help(abs)). Students were
quick to comment that “abs(x, /) Return the absolute value of the argument”
was not necessarily clear to new programmers because of the term argument.

Modules. A quadratic formula implementation requires the square root func-
tion. To introduce the idea of library functionality and implementation hiding,
we ask students to modify the code in Figure 1 to remove import math. As
described in the activity “With one small change, our Python code is now
attempting to use a function (sqrt) for which it cannot find its definition.”
Students then update the sqrt function call to math.sqrt; this exemplifies
that a programmer needs to specify where functions are defined.

Exploring control flow. The remaining 12 questions engage students with
the code in both Figure 1 as well as a fully-commented version of the code in
Figure 2. The idea of control flow and selection is introduced by having students
modify input values to roots and assessing the output. Students consider input

26

1 import math
2 def roots(fltA , fltB , fltC):
3 fltDiscriminant = fltB * fltB - 4 * fltA * fltC
4
5 if fltDiscriminant < 0:
6 print('None')
7 elif fltDiscriminant == 0:
8 print('x =', -fltB / (2 * fltA))
9 else:

10 fltX_1 = (-fltB + math.sqrt(fltDiscriminant)) / (2 * fltA)
11 fltX_2 = (-fltB - math.sqrt(fltDiscriminant)) / (2 * fltA)
12 print('x1 =', fltX_1)
13 print('x2 =', fltX_2)

Figure 2: Version two of the roots function (listed without comments).

values (1, 0, 0) (corresponding to x2 = 0) resulting in the output x = 0. In a
second case, they are asked to construct input values corresponding to x2 + 1
(with output None). Last, by mathematical background (or trial and error),
students were tasked with defining an input tuple of values in which roots
outputs two unique roots. From this case-based analysis of distinct input values,
students were asked to consider the semantics of the if and return statements
by analyzing the resulting selective control flow.

We then asked students to consider a well-commented version of the code
in Figure 2 that implements a version of roots without explicit return state-
ments. Experienced programmers may observe that both implementations are
case-based selection logic and thus are quite similar (although their corre-
sponding control-flow graphs are distinct). Hence, the preferred implementation
comes down to programmer style, comfort, and choice. Beyond basic selection,
we have students consider second version of roots to introduce the elif and
else keywords, show that there are multiple, acceptable ways to implement a
solution, and that programmers have contrasting opinions about which version
they prefer to read, implement, debug, or update.

3 Brief Analysis of the Pre-Programming Activity

Background: Course and Students. Our CS1 course is traditional in that
it emphasizes algorithms and structured programming. The course seeks to in-
troduce standard control structures (e.g., selection and repetition) and Python
data structures (lists and dictionaries). We introduce modular software devel-
opment practices via functions and modules early in the course with continued
emphasis throughout the course. The class consists of a dedicated 2-hour lab
period and two 75-minute class meetings per week. Labs are moderated by the
instructor as well as a lab aide facilitating individual attention and interactions.

We administered the pre-programming activity [1] to two sections of our

27

Table 1: Student information from Fall 2019 introductory programming
courses.

course in Fall 2019; both sections were taught by the same instructor. In total,
the two sections had 32 students; see Table 1 for some background student
information including: majors, levels, and background. There are three pos-
sible pre-requisite paths into the course. Traditionally, most students take a
thematic, general education, survey course for majors and non-majors that is
offered each semester with a theme chosen by the instructor. For Fall 2019, 50%
of the 32 students took this pre-requisite course. A student may also enter the
course by scoring a 4 or 5 on the AP Computer Science Principles exam (stu-
dents receiving a 4 or higher on the AP A exam receive credit for the course).
The third path into the course is for a student to complete a Calculus course
or a science course for majors in other areas (e.g., Biology, Chemistry, etc.).

Based on course structure, timing, and allowable pre-requisites, there are
few first year students in the course as shown in Table 1. This can be explained
by the fact that (1) this course was taught in the fall semester, (2) first year
students are encouraged to take a liberal arts schedule that includes other
general education requirements, and (3) our program is organized such that
the traditional CS1 course is not the first course in the Computer Science
department. Although it is not stated in the table, we note 8 of 32 students
are either mathematics or applied mathematics majors: 7 of the 8 entered the
class without the thematic pre-requisite course.

Questionnaire. We administered the same set of questions shown in Fig-
ure 3 immediately before and immediately after students completed the pre-
programming activity. We are using the questionnaire, in part, to assess the
effectiveness of the activity; however, this is not our foremost goal. In pre-
viewing terms, administering the questionnaire prior to the activity seeks to
activate and build background knowledge in order to enhance comprehension.
That is, while the questions may seem foreign to many students before engag-
ing in the activity, it begins the cognitive recognition and recall process. Even

28

Figure 3: Pre-programming questionnaire administered before and after the
activity.

Table 2: Pre- and post-questionnaire student responses for select Figure 3
questions.

1 2 4 5 6 7 8 11 12 Total ≈ %
Corr → Corr 19 26 9 21 12 4 17 4 17 129 44.8
Corr → Inc 0 0 1 2 1 1 1 6 4 16 5.5
Inc → Corr 11 6 22 6 10 22 12 6 7 102 35.4
Inc → Inc 2 0 0 3 9 5 2 16 4 41 14.2

if a student is unsure of an answer, the student is forced to strongly consider
the semantics of the question as well as the semantics of the programming
language construct.

As shown in Figure 3, our questionnaire consists of 13 questions that at-
tempt to highlight some of the salient ideas that students will encounter in the
activity as well as in the course. We attempted to write a set of questions that
highlight fundamental programming concepts covered in the activity that are
expeditious to complete. We did not want students to be exhausted from the
idea of data collection on top of completing the activity. Hence, most of the
questions have succinct answers except the last question requiring a sentence
or two as a response.

Analysis. In our administration of the questionnaire and activity we iden-
tified a set of non-ambiguous questions; the results of these questions are sum-
marized in Table 2. We observe that approximately 45% of students maintained
correct answers from the pre- and post-questionnaire either from prior knowl-
edge or quality guessing. We also see 35.4% of responses going from incorrect
answers to correct answers for a total of 231288 = 80.2% correct responses in

29

the post-questionnaires.
In contrast, we consider some of the incorrect responses (19.8% overall).

What is somewhat concerning is the 5.5% of responses that were correct prior to
the activity and incorrect after the activity. We observe that the main questions
of confusion may be considered the more difficult questions for students. To
gain insight into this issue, we looked more closely at results from questions 11
and 12.

For question 11 about writing an assignment statement, of the 6 incor-
rect students, 4 had no indicated prior programming experience and 2 had
non-Python experience. We observe that 5/6 of those students are majoring
or intend to major in a computer science or a math-related field and thus
may intuit a correct answer (intA = 5) on the pre-questionnaire. Some incor-
rect responses include def intA(5) where a student confused assignment with
defining a function. Another notable response confused assignment with con-
sole output: print("intA is", 5, "."). All of these responses to question
11 indicated students were making the question overly complex by answering
with new tools and concepts from the activity. We also intend to change the
wording of the question to be more crisp: “Write a line of code that assigns the
value 5 to the variable intA".

For question 12, 2 out of the 4 had no programming experience and 2 out
of the 4 had other programming experience; these data do not allow us to
speculate as to an explanation for incorrect responses.

Questions 3, 9, 10, and 13 from the questionnaire in Figure 3 were not in-
cluded in Table 2 because we considered them to be either opinion-based,
ambiguous, or answers were ambiguous.

We posed question 3 as a means of indicating to students that, while source
code may seem foreign, it can also be written in a meaningful way. We found
that 10/32 said it was not possible to understand a block of code without
programming knowledge. After the activity, 6 of those 10 reported that their
opinion had changed indicating it is possible to understand source code. Con-
trasting, 3 of the 22 reversed their opinions in that it was not possible for
the uninitiated to interpret source code. Overall, we are pleased that students
believe comprehension of code is possible even with a limited background.

Question 9 (evaluating sqrt(4)) seems straightforward: 28/32 students had
a ‘correct’ answer of 2.0 (or 2) in the pre-questionnaire. However, after the ac-
tivity, 11 answered with the value 2 while 18 suggested the instruction resulted
in an error since it omitted the math module. We deemed the question to be
ambiguous considering how the activity introduces and discusses modules; we
intend to edit the question to include a phrase about how import math is
assumed (or not). Regardless, we are pleased with the student retention of
restrictions that modules have on code.

30

On its face, question 10 seems to be a decisive question about the tab char-
acter. In fact, 21 post-questionnaire responses indicate correctly the character
is a tab. However, another 10 indicated it represented “spaces” or “indentation”.
While these responses are incorrect, they do indicate an intuitive understanding
of the concept.

Question 13 is an open-ended question intended to elicit student feedback by
explaining a programming concept in their own words. Responses were varied
and are relatively difficult to compare pre- and post-questionnaire; we will focus
on post-questionnaire responses. For example, “Runs lines of code only under
certain conditions." is a response that shows clear evidence of student owner-
ship of the concept. Compared to the response "When you have a condition, if
there are multiple options, you can only execute 1." is a student showing un-
derstanding, but is referring to a particular implementation: roots in Figure 2.
Other post-questionnaire responses indicate a lack of understanding selective
execution: "Evaluate something within a criteria." or "To differentiate between
lines of code." Our goal in analyzing the responses to this question are not for
correct or perfect responses, but instead, to abstract the idea of selection and
communicate it in their own words as a means of self-reflection.

4 Brief Discussion

We have found our pre-programming activity to be effective for several rea-
sons. It solves the problem about what to do during the first laboratory when
students have little programming knowledge. In the two years we have used
this activity we have observed anecdotally that the activity works to make stu-
dents less apprehensive about the course and lessen the psychological barriers
students erect related to the difficulty of programming even if the activity has
a math-based focus. We feel this activity works to make programming more
accessible to students and thus is worthy of continued use and evolution.

The activity also helped students identify course content schema : what to
anticipate in terms of concrete concepts as well as some of the more abstract
algorithmic ideas. A few students summarized this idea in conversation, "If the
professor highlighted concepts on the first questionnaire, it is important for me
to know."

We understand that the idea of previewing and the use of a pre-programming
activity is not new. In fact, we recognize that most faculty engage in such activ-
ities in many of their courses, specifically introductory programming courses.
However, we found the computing literature to be nearly vacant with the idea
of pre-programming. One notable exception is [2] that attempts to shepherd
students into programming and effective design using a framework that is lan-
guage agnostic. We holistically appreciate this text, but note that our pre-

31

programming activity is targeted toward our IDE as well as the syntax, se-
mantics, and documentation style of our target programming language. We
believe that an intentionally targeted previewing activity is a means by which
we can reduce the barrier for entry in programming classes as well as increase
retention from students of all backgrounds.

5 Conclusions

We described a pre-programming activity that seeks to connect student knowl-
edge with forthcoming programming concepts while setting the stage for an
introductory programming course. We then analyzed the activity through a
brief pre- and post-questionnaire showing more than 80% correctness in post-
questionnaire responses. We feel the pre-programming activity needs a new core
example as to not intimidate math-phobic students. Informally, we described
how this activity serves as a consistent point of reference for CS1 students while
also attempting to decrease the psychological barrier to entry for students into
programming.

References

[1] Chris Alvin. Introduction to programming using previewing repository,
2021. https://github.com/wcatykid/IntroProgrammingUsingPreviewing.

[2] Stewart Venit and Elizabeth Drake. Prelude to Programming. Addison-
Wesley Professional, 6th edition, 2014.

32

vWaterLabs: Design and Characteristics
of a Virtual Testbed for Water-focused

ICS Cybersecurity Education∗

Matthew J. Kirkland1, Stu Steiner2, Daniel Conte de Leon1

1Center for Secure and Dependable Systems
University of Idaho, Moscow, ID 83844

2Computer Science Department
Eastern Washington University, Spokane, WA 99201

kirk8182@alumni.uidaho.edu, ssteiner@ewu.edu, dcontedeleon@ieee.org

Abstract

Industrial Control Systems (ICS) are increasingly being targeted by
cyber-attacks while the need for cybersecurity professionals with knowl-
edge of ICS is at an all-time high. Education and training for ICS cyberse-
curity is costly and not available at the needed scale. In addition, there is
a lack of easily available and cost effective material focused on ICS cyber-
security education, which impedes our nation’s ability to quickly educate
and train ICS cybersecurity professionals. Within this context, water con-
trol systems have not been given as much attention from the educational
community as other ICS systems such as electric power. To help solve this
problem, we created vWaterLabs: a virtual testbed with an accompany-
ing set of labs for ICS cybersecurity education focused on water systems.
The contributions of this article are: (1) Analysis of the characteristics
of educational and water focused ICS testbeds, (2) Design details of a
virtual-only and cost effective testbed for ICS cybersecurity education
focused on water systems, and (3) Introduction of an ICS vulnerabil-
ity assessment lab implemented using the virtual testbed. vWaterLabs is
open source and freely available at https://github.com/ICSSecurityLabs.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

33

1 Introduction

Malicious threats to Industrial Control Systems (ICS) and critical infrastruc-
tures are growing rapidly [3]. In addition to the rise of critical infrastructure
threats, there exits a well-documented need for training and education of cy-
bersecurity professionals which may be even greater for the case of ICS cyber-
security professionals.

To meet the demand for cybersecurity professionals, colleges and univer-
sities are increasingly offering cybersecurity courses and degrees. Industry is
also increasing training opportunities, some targeted to ICS cybersecurity. ICS-
CERT, SANS, and a few other organizations offer ICS cybersecurity training,
including hands-on experiences taught by leading industry professionals. De-
spite these efforts, current training and educational opportunities cannot reach
the scale needed to meet the demand for cybersecurity professionals within the
next few years.

1.1 Proposed Solution

We designed and implemented vWaterLabs to help rapidly increase the training
and education of cybersecurity professionals with knowledge of water-focused
ICS cybersecurity. vWaterLabs is a virtual testbed for industrial control sys-
tems cybersecurity education focused on water control systems along with a
set of accompanying labs. The objectives of vWaterLabs are:

• Provide a testbed for ICS cyber-education focused on water systems.
• Enable hands-on learning in water ICS cybersecurity.
• Ensure the testbed is cost effective, easily replicated, and easy to use.
• Ensure the testbed and labs help satisfy the Centers for Academic Ex-

cellence in Cyber Defense (CAE-CD) relevant Knowledge Units (KUs).

1.2 Contribution

The contributions of this article are: (1) Analysis of the characteristics of edu-
cational and water focused ICS testbeds; (2) Design details of a virtual and cost
effective testbed for ICS cybersecurity education focused on water systems; and
(3) Introduction of an ICS vulnerability assessment lab implemented using the
vWaterLabs virtual testbed.

A separate article, titled vWaterLabs: Developing Hands-On Laboratories
for Water-focused Industrial Control Systems Cybersecurity Education, de-
scribes the following contributions: (1) Pedagogical analysis of the knowledge
and skills needed for water-focused ICS cybersecurity practitioners; (2) Design
considerations and decisions for easily reproducible labs for water focused ICS

34

cybersecurity education; (3) Introduction of a MODBUS injection and miti-
gation’s lab that uses the vWaterLab virtual ICS testbed. This related article
is expected to be appear in the Journal of Computing Sciences in Colleges,
volume 36, issue 10.

Our ultimate goal is that vWaterLabs will provide instructors and students
opportunities for development of clear, detail-oriented, and hands-on under-
standing of the approaches, techniques, and tools used to protect today’s ICS
systems related to water processing.

1.3 Overview of this Article

The rest of this article is organized as follows: Section 2 describes educational
ICS testbed characteristics. Section 3 describes the architecture of a water-
focused virtual testbed. Section 4 introduces an ICS vulnerability assessment
lab implemented on the virtual testbed. Section 5 presents our conclusion and
proposed future work.

2 Educational ICS Testbed Characteristics

Using Google Scholar, we searched for and reviewed in detail ICS cybersecu-
rity education literature. For this search, performed in April 2019 and then
updated in June 2020, we used the following search string: “cyber” and “ICS”
and “testbed” and “water”. This search resulted in 72 items. After eliminating
items that were not related to education in water-related ICS cybersecurity we
were left with 7 strongly related literature items. This section describes the
common and unique elements related to educational ICS testbed characteris-
tics that we observed in the surveyed literature. Many of the testbeds share
common general designs but implementations are varied and unique.

2.1 Control System Zones and Network

All reviewed works describe an ICS Network and a Enterprise Network. The
ICS Network generally contains all the control technology and the I/O devices.
The Enterprise Network contains the traditional IT network which has connec-
tion points into the ICS Network. Morris et. al [8], Foo et. al [4], and Yardley
et. al [11] described similar ICS infrastructures. Gao et al. [5] and Čeleda et.
al [9] described an ICS testbed based on the ANSI/ISA-99 four level reference
model.

• Level 3: Enterprise Network
• Level 2: Supervisory Control Network
• Level 1: ICS or Control Network
• Level 0: I/O and Control Devices

35

The ANSI/ISA-99 reference model subdivides an ICS Network into Level
2: Supervisory Control Networks containing high-level automation devices,
servers, and Human Machine Interfaces (HMI); Level 1: Control Network con-
taining the field level control devices Programmable Logic Controllers (PLCs),
Remote Terminal Units (RTUs), and Smart Relays or Intelligent Electronic De-
vices (IEDs); and Level 0: Physical Control Devices containing the field devices
(actuators and sensors).

Green et al. [6] offer another variation on the Lancaster’s Testbed. The
Lancaster’s Testbed is designed specifically for security research, which follows
the Purdue Enterprise Architecture (PERA) [10]. The top down architecture
describes: the Enterprise Zone comprised of the Enterprise Network and the
Site Business Planning and Logistics Network. A Demilitarized Zone separates
the Manufacturing Zone from the Enterprise Zone. The Manufacturing Zone is
composed of the Site Manufacturing Operations and Control and the Cell/Area
Zone. The Cell/Area Zone is broken into the Area Supervisory Control, Basic
Control, and Process layers respectively. The last zone is the Safety Zone which
connects the Safety-Critical controls and equipment.

2.2 Programmable Logic Controllers (PLC)

Most ICS testbeds contain field devices. PLCs are commonly used to implement
the Master Terminal Unit (MTU) and Remote Terminal Units (RTUs). Ob-
served units include: Control Microsystems, Inc. SCADAPack LP PLC, Allen
Bradley Compact Logix L35E, Siemens S7-300, Siemens S7-1200, and a vari-
ety of trainer PLCs from DirectLOGIC, Allen Bradley, and Mitsubishi. PLCs
may be programmed in a variety of ways, with the most common being Ladder
Logic as described by Morris et. al [8], Foo et. al [4], and Green et al. [6].

2.3 Human Machine Interface (HMI)

The HMI allows students to monitor the changes in the ICS during the labs.
An HMI was implemented in all of the testbeds reviewed. Morris et. al [8] was
the only paper to reference a dedicated HMI device.

2.4 ICS Networking and Control Protocols

The reviewed literature referenced a variety of ICS networking protocols that
were implemented in the educational ICS testbeds. The most commonly ref-
erenced protocol was MODBUS followed by Distributed Network Protocol
(DNP3). Both MODBUS and DNP3 are used for communication between
PLCs, HMI, SCADA, and other ICS equipment, and based on the lack of secu-
rity in their design, both are vulnerable to tampering and attack if malicious

36

Figure 1: vWaterLabs Virtual Testbed Network Diagram

actors obtain access to the Control Network, whether directly or indirectly.

2.5 Virtualization

Foo et al. [4], Yardley et al. [11], Gao et al. [5], and Green et al. [6] all included
some implementation of virtualization. Virtualization allows for easy setup,
lab replication, and the synchronous participation from multiple students and
instructors. Virtualization also facilitates Red-Blue Team exercises. The most
common virtualization platform contains a single deployed ESXi Server running
vSphere. This ESXi Server allows the students to connect with a laptop to the
ICS Testbed.

3 vWaterLabs Virtual Testbed Architecture

The vWaterLabs virtual testbed is based on a simplified water treatment pro-
cess. The testbed provides a low cost educational platform that is capable

37

of running a variety of ICS cybersecurity training scenarios. It allows semi-
configurable Enterprise and Supervisory networks. This configuration allows
virtual components to be added or removed based on desired configuration for
a variety of educational scenarios.

3.1 Design

vWaterLabs testbed implementation and network are illustrated by Figure 1.
The virtual testbed was implemented with four distinct zones based on the
ANSI/ISA-99 reference model. Based on the literature review, network lev-
els 1-3 are implemented as Ethernet networks. The network map in Figure 1
illustrates the Ethernet connections between the different networks.

3.2 Computing Infrastructure

The vWaterLabs testbed requires computing hardware to run. vWaterLabs
virtual machines (VMs) may be deployed in any cloud-based or local virtu-
alization platfrom of choice, for example vSphere/ESXi or Google Cloud; the
vWaterLabs testbed has been tested on both.

The implementation of the vWaterLabs testbed requires different virtual
machine (VM) configurations for each level of the ANSI/ISA-99 reference
model. The following subsections explain the rationale and implementation
details for each virtual machine.

VMs Level 3: Windows 10 and Windows 2012 Active Directory
Server

Windows 10 was chosen because of its popularity in enterprise environments,
and Windows 10 is the operating system that most students will likely have on
their own personal computers or laptops.

Windows Active Directory (AD) and Group Policy (GP) are commonly used
to authenticate users and enforce the security policies for enterprise networks. A
Windows 2012 AD VM is running Active Directory and Domain Name services.
This acts as the enterprise domain controller for the vWaterLabs testbed.

The AD Server contains two AD accounts (Enterprise user and Engineer
user). The Enterprise user account allows authentication and access to the Win
2012 AD machine. The Win 10 VM emulates a standard workstation for an
engineer user. The engineer user authenticates from the Win 10 VM via the
Win 2012 AD VM and the Active Directory server.

38

VMs Level 2: Win 10, HMI/SCADA/Services and Kali

As previously stated Windows 10 was selected based on its popularity both for
client environments and also ICS environments.

The Supervisory Control and Data Acquisition (SCADA) machine was im-
plemented using the Open Source software ScadaBR. This software is free,
open source, and it contains a rich feature set that includes the Human Ma-
chine Interface (HMI), event and alert generation, and a historian application
for storing data at set intervals.

The Kali machine is used for the MODBUS master simulator. As stated
previously, the most common protocol for ICS testbeds is MODBUS. The Kali
machine simulates MODBUS traffic via the free open source software library
modpoll.

VMs Level 1: Ubuntu 18.04 OpenPLC

OpenPLC on a Ubuntu 18.04 machine was used for simulating PLC devices.
It features three software components including:

• The runtime software, the actual PLC software that can be run as a soft-
PLC. This software can execute PLC programs in the form of Ladder
Diagram (LD), Instruction List (IL), Function Block Diagram (FBD),
Sequential Function Chart (SFC), and Structured Text (SL).

• The editor software, allows for PLC programming.
• HMI software, allows for HMI programming using ScadaBR software.

PLCs are created and programmed with the OpenPLC runtime software
using the editor software interface. The PLCs are considered empty when the
vWaterLabs testbed is deployed.

The Ubuntu 18.04 machines contain a dual network interface, because the
input and output behavior is simulated on the Level 0: I/O Network. One
network interface connects to Level 0 and the other connects to Level 1.

VM Level 0: Ubuntu 18.04 Server

Hardware-in-the-loop (HIL) is a technique to accurately simulate ICS physical
processes. HIL was frequently referenced by the literature.

In vWaterLabs, the HIL implementation of the physical components, includ-
ing I/O, are simulated using Python scripts and the PyModbus library. The
Ubuntu 18.04 Server VM operates via a Python script, which uses PyMod-
bus, to communicate with the PLCs and update the PLC’s memory values.
Updating the memory values simulates physical I/O.

39

Figure 2: vWaterLabs Hands-on Vulnerability Assessment Lab Slide: Examine
Firewall Rules Task

VM: pfSense Firewall

pfSense was selected as the firewall based on its popularity, functionality, ease of
use, and free open source availability. pfSense can be configured using a graphi-
cal web interface, allowing easy access for students. pfSense supports a number
of very useful options including: Virtual Private Network (VPN) Server, Do-
main Name System (DNS)/Dynamic Host Configuration Protocol (DHCP),
Intrusion Detection System (IDS), Routing, Stateful Packet Inspection, Two
Factor Authentication, and more.

This dual network interface VM works as a router and firewall between the
ICS and Enterprise Network. The firewall is initially configured to allow any
communication between the two networks. While not realistic, this configu-
ration gives students an opportunity to practice configuring firewalls for the
Enterprise and ICS network perimeters.

4 vWaterLabs Hands-On Lab: ICS Vuln. Assessment

One of the vWaterLab labs introduces students to ICS vulnerability assess-
ments. This Lab’s learning objectives are:

• Reinforce understanding of PLC, HMI, and SCADA components;
• Review details of the MODBUS protocol;
• Examine ICS network traffic using Wireshark;
• Perform an ICS vulnerability assessment;
• Implement ICS network defense techniques using a firewall.

Hands-on lab activities include: (1) introduction to assessment methods;
(2) vulnerability assessment through an assessment exercise; (3) implementa-

40

tion of network segmentation at layer 3 using firewalls. The lab write up is a
20 page PDF booklet with the following details for each section: informational
reading, estimated duration time, a task with detailed instructions, or a chal-
lenge with clues but no instructions. Figure 2 displays a sample slide. The lab
can be completed in approximately two hours. For more information about the
structure of these tutorial-style hands-on labs we refer the reader to two prior
published works [7, 2].

5 Conclusion and Future Work

vWaterLabs is a virtual testbed with accompanying hands-on laboratories for
Industrial Control Systems Cybersecurity education focused on water systems.
In this article, we described: (1) analysis of the characteristics of educational
and water focused ICS testbeds; (2) design details of a virtual-only and cost
effective testbed for ICS cybersecurity education focused on water systems;
and (3) introduction of an ICS vulnerability assessment lab implemented us-
ing the vWaterLabs virtual testbed. The vWaterLabs specifications, VMs, and
labs are freely available at https://github.com/ICSSecurityLabs Future work
will include developing a semi-automated process to create and configure the
testbed environment similar to the ADLES system [1].

Acknowledgments

This work and the used computing infrastructure were partially funded by
an Idaho IGEM grant (IGEM17-001), the U.S. National Science Foundation
(NSF) CyberCorps® award 1565572, and the M.J. Murdock Foundation. The
opinions expressed in this article are not those of the NSF, the M.J. Murdock
Foundation, or the State of Idaho.

References

[1] Daniel Conte de Leon, Christopher E. Goes, Michael A. Haney, and Axel
W. Krings. Adles: Specifying, deploying, and sharing hands-on cyber-
exercises. Computers and Security, 74(May 2018):12–40, 2018.

[2] Daniel Conte de Leon, Ananth A. Jillepalli, Victor J. House, Jim Alves-
Foss, and Frederick T. Sheldon. Tutorials and laboratory for hands-on
os cybersecurity instruction. Journal of Computing Sciences in Colleges,
34(1):242–254, October 2018.

41

[3] Dragos, Inc. Threat proliferation in ics cybersecurity: Xenotime now tar-
geting electric sector, in addition to oil and gas. Online, June 2019.

[4] Ernest Foo, Mark Branagan, and Thomas Morris. A proposed aus-
tralian industrial control system security curriculum. In Proceedings of the
Hawai’i International Conference on System Sciences 2013, pages 1754–
1762. IEEE, 2013.

[5] Haihui Gao, Yong Peng, Kebin Jia, Zhonghua Dai, and Ting Wang. The
design of ICS testbed based on emulation, physical, and simulation (EPS-
ICS Testbed). Proceedings - 2013 9th International Conference on In-
telligent Information Hiding and Multimedia Signal Processing, IIH-MSP
2013, pages 420–423, 2013.

[6] Benjamin Green, Anhtuan Le, Rob Antrobus, Utz Roedig, David Hutchi-
son, and Awais Rashid. Pains, Gains and PLCs: Ten Lessons from Build-
ing an Industrial Control Systems Testbed for Security Research. 10th
USENIX Workshop on Cyber Security Experimentation and Test (CSET
’17), pages 1–8, 2017.

[7] Ananth A. Jillepalli, Daniel Conte de Leon, and Frederick T. Sheldon.
CERES NetSec: hands-on network security tutorials. Journal of Comput-
ing Sciences in Colleges, 33(5):88–96, May 2018.

[8] Thomas Morris, Anurag Srivastava, Bradley Reaves, Wei Gao, Kalyan
Pavurapu, and Ram Reddi. A control system testbed to validate criti-
cal infrastructure protection concepts. International Journal of Critical
Infrastructure Protection, 4(2):88–103, 2011.

[9] Pavel Čeleda, Jan Vykopal, Valdemar Švábenský, and Karel Slavíček.
Kypo4industry: A testbed for teaching cybersecurity of industrial con-
trol systems. In Proceedings of the 51st ACM Technical Symposium on
Computer Science Education, SIGCSE ’20, pages 1026–1032, New York,
NY, USA, 2020. Association for Computing Machinery.

[10] Theodore J. Williams. The purdue enterprise reference architecture. Com-
puters in Industry, 24(2-3):141–158, sep 1994.

[11] Tim Yardley, Suleyman Uludag, Klara Nahrstedt, and Pete Sauer. De-
veloping a smart grid cybersecurity education platform and a preliminary
assessment of its first application. In Proceedings of the Frontiers in Ed-
ucation Conference 2014, pages 1–9. IEEE, February 2014.

42

Short Courses in Computer Science∗

Christopher Healy, Andrea Tartaro, and Bryan Catron
Department of Computer Science

Furman University
Greenville, SC 29613

{chris.healy,andrea.tartaro,bryan.catron}@furman.edu

Abstract
Our institution has adopted a Maymester, a brief academic term held

at the end of the academic year. Students who enroll in this optional term
take a single immersive course for three weeks. This paper describes the
authors’ experiences in teaching five different computer science courses
during the Maymester. The small class size, brief duration, and intense
schedule pose special teaching opportunities and challenges. Some classes
are programming intensive, while others have a broader or more liberal
arts focus. Daily class activities are highly interactive. The Maymester
has allowed us to offer a greater variety of new courses in subjects that
otherwise could not be taught at our small college.

1 Introduction

In 2008, our college modified the academic calendar to include a three-week
term at the end of the school year, a so-called “May Experience” or “Maymester.”
The purpose of this short term is to allow the faculty to offer a greater variety
of elective courses, especially in subjects where there might not be enough ma-
terial to justify a full semester offering. A May course could be a pilot project
for a future full semester course, possibly for the major or for general education.

This paper describes the authors’ experiences in teaching five different
three-week courses in computer science over the last decade. Teaching such
a short course introduces new challenges and opportunities. Each May course
is designed to be a fast-paced and immersive experience, which is a completely
different environment from the regular academic year.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

43

2 Background

To ensure uniformity, all of our Maymester classes award two semester hours of
credit, compared to four credits for a typical semester course. Faculty are free
to schedule the course however they like. There is no maximum or minimum
number of contact hours required, other than the three-week duration of the
term itself. An example arrangement is for the class to meet about three hours
per day, five days a week, for a total of 15 class meetings.

Maymester is optional for both faculty and students. Classes during this
special term are smaller than those taught during the regular school year.
Generally, the minimum course enrollment per class is six students. Enroll-
ments are typically limited to 12, though faculty may increase this number.
Maymester enjoys some popularity with the students at large. In a given year,
up to 25 percent of the student body enrolls in a May class. Among the stu-
dents who graduated in the last five years, the overall participation rate is 45
percent: 28 percent enrolled in a single May course during their college career,
and another 17 percent took two or more. The participation rate among men
(48 percent) is slightly higher than among women (43 percent).

To encourage students to enroll in Maymester, the tuition is free. The
Maymester is financed by the aggregate tuition dollars collected during the
regular school year. Faculty are paid at a rate commensurate with teaching
summer school or teaching an overload class during the school year. In ad-
dition, the college offers grants of up to $2500 to finance the start-up costs
incurred when teaching the course. For example, the faculty member may need
to purchase specialized equipment or software.

At our institution, Maymester courses must be unique: they cannot be
taught at any other time of the year. A May course may be used to fulfill
a major requirement, but students must not be required to take any May
class. It cannot fulfill a general education requirement. As a result, May course
enrollment is completely voluntary. Students elect to take May classes in order
to get ahead on credits, or to make up for credits lost due to a failure or
withdrawal. The Maymester is also convenient for students who are not able
to schedule a computer science course in the spring, such as athletes who need
to underload during their season. In a given year, a student may only take one
Maymester class. It is an immersive experience, akin to a full-time job for three
weeks. Similarly, faculty may only teach one May course per year.

Due to their unique and elective nature, Maymester courses usually have no
pre-requisites, in order to attract more students. In 2019, of the 52 Maymester
courses offered throughout the college, only ten had a pre-requisite. Travel-
study May courses have become especially popular in recent years. In 2019, 18
of the 52 courses were travel-study. Because Maymester courses are meant to
be highly interactive, they are not intended for independent study classes or

44

online instruction. There was no Maymester in 2020 due to COVID-19.

3 Related Work

Burge and Brinkman [5] discuss computer science course design in the context
of a one-course-at-a-time (OCAAT) academic calendar used at a small number
of colleges. They identify some advantages and disadvantages of such a scheme.
For example, students do not need to multitask between multiple courses. An
instructor knows that if a student is struggling, it cannot be the result of the
student spending time on other classes. The authors of the study concede the
necessity for students not to stay on schedule, and the constant time pressure
causing work to be rushed. It may not be the best way to teach every course.

The intense daily pace of a Maymester course is similar to that seen in
OCAAT. The main difference is that an OCAAT course is intended to be
equivalent to a full semester course, while for us a Maymester course carries
half the credit of a typical semester course. Our May classes are electives and are
never pre-requisites to other courses. OCAAT courses are also slightly longer,
typically having 18 class meetings [2], compared to 15 for the Maymester.

On the other hand, some colleges feature a short term in the middle of
the academic year, such as in January, as part of a “4-1-4” calendar. At these
institutions, the January term is part of the regular academic year, and stu-
dents must take and pass such courses, for example [1]. But at our college,
the Maymester is optional. A course offered during a January term may carry
equal weight to a single semester course, and lasts four weeks instead of three.

Meeker [7] describes the development of a Maymester computer science
course at a liberal arts college. It was designed as a follow-on to a computer
science course and a physics course, both of which were pre-requisites. At that
institution, all Maymester courses are travel-study. By contrast, at our insti-
tution, most May courses are taught on campus and have no pre-requisites.

4 The Courses

Since the inception of the Maymester, our department has taught eleven May
classes in five different subjects. The total enrollment of these courses was
85. In this section, we briefly describe the five different Maymester courses
in computer science. The first three are programming courses. Their subject
matter is not much different from the traditional computer science curriculum,
and students would be expected to have taken at least one programming course
already. The last two courses below are less technical and have no pre-requisite,
in order to encourage broader student participation.

45

4.1 A Second Programming Language

This course is designed for students who have already completed CS 1 and
wish to learn a new programming language. It fits well with our department’s
teaching philosophy. We have always stressed to our majors the value of being
able to program in multiple languages. Java was the main teaching language
in our department from 2001 to 2015. However, many students found our CS 1
Java course intimidating. We considered changing our introductory language to
Python, a language that had never been taught before or used by any course at
our college. The Maymester seemed an ideal environment to experiment with
teaching Python, as a dry run for a revised CS 1 course. The goal of the course
was for students to acquire a CS 1 level of proficiency in the new language.

Generally, each class meeting began with a lecture approximately 45 min-
utes long. On two of the class meetings, the lesson was preceded by a quiz.
After the lesson, the bulk of the class time was spent in the computer lab,
where students were given a set of exercises that explored the new Python con-
cepts. Students wrote Python programs to solve short problems. Homework
consisted of programming assignments to be submitted in one or two class
days. The last day was a final examination, consisting of two parts. The first
part was a closed-book one-hour written test of short-answer questions. The
second part was a two-hour open-book practical consisting of five programming
problems to solve on the computer.

4.2 Parallel Programming

In this course, rather than introducing students to a new language, the focus
was a new programming paradigm. Students were taught to write parallel C
programs using the Message Passing Interface (MPI) [8]. The structure of the
course was similar to learning a new language, with a brief lesson followed by
a structured laboratory.

The course began by having students assemble a Raspberry Pi cluster. The
class was divided into four teams. Each team was assigned eight Raspberry Pis
to work with, along with other necessary equipment, including SD cards, power
cords, power adapters, Ethernet cords, plus one keyboard, monitor, and mouse.
It took the first three classes for the students to hook up their machines, install
the operating system and MPI software. Students, already proficient in Java,
learned the rudiments of C. The rest of the course was devoted to hands-on
lessons on how to use the most fundamental MPI functions, such as broadcast,
barrier, scatter, and gather. Having their own cluster at their disposal allowed
students to experience genuine parallel programming speedup.

46

4.3 Mobile App Development

This course introduces students to programming for the mobile application en-
vironment; specifically the iPhone and Apple Watch platforms – although this
could be easily changed to the Android platform. The primary content consisted
of learning the Swift programming language, software development, and the
app frameworks necessary for basic app development. The first weeks’ classes
consisted of exploration of the technologies unique to mobile platforms (touch
sensing, orientation sensing, camera, sound, animation, GPS, etc.) Midterm
classes were focused on each individual student going in-depth on advanced
use of technologies and developing a presentation / tutorial for the other stu-
dents. The last portion of the term was spent on a final, small team project
that required the students to combine multiple technologies into a new (unique)
application of their choosing.

Initial class days were approximately 2-1/2 hours focused on actively ex-
ploring basic content areas in a collaborative lab, demonstration style. Later
classes tended to be more independent work as they explored their selected
technologies and their final project. It was noted that most students required
some additional time outside of class for completion. The most successful stu-
dents, aside from being self-motivated, had a well-developed idea for a project;
they were highly motivated to do something “cool” (The instructor occasionally
needed to temper expectations to match the limited timeframe.)

4.4 Science Fiction

This course focuses on works of science fiction in which computers or robots are
an essential plot element. Due to the short duration of the course, the aim was
to expose the students to as many examples of fiction as feasible. Thus, rather
than having students read novels, they were assigned works that would take
less time to digest. The repertoire included a total of 35 stories, comprising
nine feature-length movies, nine one-hour television programs, three printed
short stories, and fourteen radio programs. The stories were published from
1944 to 2014. The stories generally fell into two categories. The first set of
stories focused on popular fears of technology, such as computers taking over
the world. The second set of stories treated the subject of how well a robot can
approximate human behavior.

Each day, outside of class, students were assigned a radio show to listen to,
usually 30 minutes in length, or a short story to read. Fortunately, the radio
shows and short stories are in the public domain, so that the students did not
need to purchase anything for the course. The assigned story would be discussed
at the start of the next class. The class would then have a movie or television
viewing. Students were given several minutes to collect their thoughts, write

47

down their impressions, and share their notes with the student sitting next to
them. The remaining hour of class was spent in discussion of the themes of the
film, and comparisons among different works. There were no quizzes or exams
during the course. Homework consisted of two 1000-word papers, plus a study
guide identifying issues raised by each story.

4.5 e-Arts and Crafts

In the e-Arts and Crafts class, students researched interactive projects that
artists, designers, crafters, and makers have created using technology while
creating their own art or craft project using the Arduino LilyPad. This class
draws inspiration from Buechley and colleagues [4], whose work seeks to in-
crease participation of women in computing by asking, “how can we integrate
computer science with activities and communities that girls and women are
already engaged in?”. Each morning, students presented research or other ap-
proved articles related to interactive and electronic arts or crafts. In the af-
ternoon, students worked in groups on LilyPad tutorials which they developed
into their own unique projects. No computer programming experience was re-
quired for this course, since LilyPad is designed to be used by novices. The
course was offered twice – the first offering included both computer science
and non-computer science students, while the second offering included only
non-computer scientists.

5 Lessons Learned

Table 1 summarizes the enrollment statistics of the eleven course sections we
have offered since 2009. Each year on average, there is only enough demand
to support one May course in our department. Our collection of Maymester
classes has attracted mainly computer science majors. They have comprised 69
of the 85 (81 percent) of our enrollments overall. We also note that few women
have taken a Maymester CS course. Women have comprised just 12 of the
85 (14 percent) of our May enrollment. These figures compare to 74 percent
majors and 23 percent women taking computer science classes for a regular
term such as fall 2019. Although the Mobile apps course was the most popular
overall, the e-Arts and Crafts course was most successful at attracting women
and non-computer science majors. Given that a student may only take a single
May class each year, the classes we offer are in competition with those of other
departments. Furthermore, relatively few students take more than one May
course during their entire college career, since other equally desirable options
exist, such as getting a summer job or research assistantship.

Maymester instructors indeed find the schedule exciting yet relentless, with
little room for error or falling behind. Like the mythical man-month [3], even

48

Table 1: Enrollment statistics of Maymester classes, 2009-2019

Course Iterations Total enrollment CS majors Women
Python 2 15 13 0
Parallel 2 14 14 0

Mobile apps 4 34 34 5
Sci-Fi 1 7 4 1

Art/crafts 2 15 4 6

Total 11 85 69 12

though the number of contact hours for a May class approaches that of a
semester course, only so much work can be accomplished in three weeks. It
is not the same as a course that meets once a week for 15 weeks, where the
students have the maturation time to let ideas “sink in.” In Maymester the
stress level reaches its height on the last two days, when some students seem
to adopt a “just get it done” mentality, and have little patience for crafting
elegant solutions.

We have found that all of the students were able to immerse themselves into
the class. Teams of two worked well in classes involving very detailed tasks,
such as building the Raspberry Pi cluster. In the e-Arts and Crafts class, we
experimented with teams of three. In that class it was helpful if one member
of each team already had programming experience. But larger teams are not
feasible due to the low enrollment. Having students working together helps
everyone keep to the daily schedule. The instructor needs to pay attention to
how much the students accomplish each day, in order to readjust the next day’s
schedule as needed.

When preparing a course, we found it essential to have each day carefully
planned well in advance, but with flexibility to allow for hiccups. Technical
problems consumed precious time. For example, once we discovered that we
did not order enough hardware components, and had to have additional ones
delivered overnight at considerable expense. Multi-day projects should be di-
vided into well-defined portions with logical stopping points each day. When a
lab begins, it is a good idea to let the students know how far they should get
so they can pace themselves.

All of the students who enrolled in a computer science Maymester course
successfully completed it. Class absences were practically nonexistent. But un-
fortunately, across the entire college many students see the Maymester primar-
ily as an opportunity to improve their grade average. Over the last ten years,
84 percent of Maymester grades have been A’s, compared to 43 percent during
a regular semester. Therefore, students may expect to receive an A by default.

49

In our course evaluations, one student who received a B commented that “the
grading was unreasonably harsh.”

Already the Maymester has had a lasting effect on the curriculum of our
regular academic year. After two successful iterations of the Python course,
our department decided to change the CS 1 teaching language from Java to
Python in 2015.

6 Applications to Full-Term Courses

Some of the pedagogical techniques employed in the Maymester can be adapted
to regular semester-long courses as well. A Maymester course, such as the ones
described earlier in this paper, could become one component of a semester
course. In an upper-level elective course, it may be desirable for students to
immerse themselves in a specific topic for a short period of time. For example,
a mobile phone app development project could be a prototyping case study
for a semester course in human-computer interaction. And the experience of
developing a Raspberry Pi cluster can be incorporated into a general course in
computer organization.

Regular semester courses lack the full-day immersion that a Maymester
course offers. But the applied learning practices can be utilized in any class.
May courses favor a flipped classroom format [6] over traditional lectures. First,
content is presented to students in advance, such as a video tutorial. Second,
class time is devoted mainly to hands-on laboratory work in small groups. Stu-
dents are responsible for consulting hardware and API documentation relevant
to their needs. Finally, each group can report to the rest of the class what they
discovered or accomplished.

7 Future Possibilities

In addition to the five courses mentioned earlier, we are planning to offer at
least four more Maymester courses in computer science. One such course is
on research methods, analogous to similar courses that are taught in biology,
chemistry, and psychology. Many undergraduate students in our department
conduct summer research projects under the direction of faculty. Such a course
would introduce students to background concepts and skills that are common
to all computer science projects, such as ethics, data and code management,
and presentation skills.

Secondly, we have prepared a new course on remote sensing. This is a course
where students create a system that communicates inside a natural environ-
ment, such as a field or forest. We plan to use the Arduino for students to cre-
ate interactive projects. Arduino is an electronics prototyping platform, which

50

includes a circuit board, LED lights, sensors, and a software development en-
vironment. It is simple enough to use that students could take this course
without a pre-requisite. The specialized hardware costs associated with this
course are higher than the other Maymester courses (about $200 per student),
so additional funding would be necessary to offer this course.

The Maymester can make it easier for computer science students to com-
plete a study-abroad experience. A traditional study-abroad program lasts a
whole semester, and students take courses from two or more departments,
built around a common theme. It is usually difficult to find a logical fit for
computer science courses into a semester-long study-abroad program. But a
study-abroad program during a Maymester can focus on a single course, with-
out having to find extra-departmental courses to combine with. We know there
is demand for study-abroad programs in computer science. In 2019, eleven of
our own majors enrolled in a Maymester study-abroad course offered by other
departments. Therefore, we plan to offer a Maymester course on the history
of technology and codebreaking in the UK. This is already a component of
an existing semester-long study-abroad course [9]. Highlights of this journey
include the Belfast shipyards, the first limelights used in theaters, and most
notably the huts at Bletchley Park where Alan Turing built the first computer.

Finally, recognizing that game simulations are a part of most of our pro-
gramming classes, another future course will analyze board games. This course
is intended to be interdisciplinary, and team-taught with faculty from both
computer science and mathematics. The course will focus on how game boards
are modelled computationally as a data structure, either as a tree or an array.
In addition, students will see how the statistical properties of random numbers
used in games can affect player choices and the outcome of the game.

8 Conclusion

Over the last decade, our department has offered five different computer science
courses taught during the three-week annual May Experience. These courses are
free electives for the students and feature unique benefits. They give the faculty
an opportunity to experiment with new elective courses, especially courses that
do not require an entire semester of time for the students to master. For the
students, it is an immersive and collaborative experience, with significantly
smaller class sizes and much more attention from the instructor.

Not every course can fit into a three-week term. Creating and preparing
the course requires the instructor to devise a set of activities that all students
can realistically achieve in just three weeks working full time. Technology usu-
ally advances faster than the curriculum. In the Maymester we can offer new
courses in subjects that otherwise could not be taught at our small institution.

51

Teaching Maymester classes has significantly broadened the variety of courses
our department has offered in recent years.

References

[1] 2015-2016 Catalog. Wofford College.

[2] Cornell college faculty handbook 2019-20. https://www.cornellcollege.
edu/academic-affairs/faculty-handbook/2019-20\%20Faculty-Handbook-
Revised\%2002-28-2020.pdf.

[3] Frederick Brooks. The Mythical Man-month: Essays on Software Engineer-
ing. Addison-Wesley, 1995.

[4] Leah Buechley, Mike Eisenberg, Jaime Catchen, and Ali Crockett. The
lilypad arduino: using computational textiles to investigate engagement,
aesthetics, and diversity in computer science education. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI
’08, pages 423–432, New York, NY, USA, 2008. ACM.

[5] Janet Burge and Bo Brinkman. Teaching and learning under pressure:
Intensive (accelerated, block) computer science courses. In Proceedings of
the ACM SIGCSE Technical Symposium on Computer Science Education,
SIGCSE ’17, page 721, New York, NY, USA, 2017. ACM.

[6] Mary Lou Maher, Celine Latulipe, Heather Lipford, and Audrey Rorrer.
Flipped classroom strategies for cs education. In Proceedings of the ACM
SIGCSE Technical Symposium on Computer Science Education, SIGCSE
’15, pages 218–223, New York, NY, USA, 2015. ACM.

[7] Paige Meeker. Interdisciplinary travel courses – creating ‘magical’ experi-
ences. Journal of Computing Sciences in Colleges, 29(4):43–49, 2014.

[8] Peter Pacheco. An Introduction to Parallel Programming. Morgan Kauff-
man, 2011.

[9] Kevin Treu. History of technology and discovery: a study away experience
in computer science. Journal of Computing Sciences in Colleges, 36(5):160–
167, 2021.

52

A Web-Based Toolkit
for Exploring Cryptography∗

Mikel Gjergji, Edmund A. Lamagna
Department of Computer Science and Statistics

University of Rhode Island
Kingston, RI 02881

mikel_gjergji@uri.edu, eal@cs.uri.edu

Abstract
A set of web-based tools has been developed to assist in teaching and

learning cryptography. The website provides a uniform environment for
exploring topics commonly taught in introductory courses. These include
substitution and transposition ciphers, block ciphers (DES), public-key
infrastructure and encryption (Diffie-Hellman key agreement, RSA), and
hashing. There are also tools for investigating number theoretic concepts
such as modular arithmetic and the Euclidean algorithm. The applets
allow users to explore visually how the methods operate. An instruc-
tor can use the tools in the classroom to explain the algorithms and
present examples. Students use the site to explore methods on their own,
solve problems, and crack cryptographic challenges. The tools eliminate
the need for students to write programs to perform these computational
tasks, enabling them to focus on important algorithmic and mathemati-
cal ideas.

1 Introduction

Cryptography is an important real-world application of computer science and
mathematics. The subject can be taught to student audiences at all levels. For
liberal arts majors or general education students, a course can be constructed
at an introductory, pre-calculus level. A successful course for this audience pro-
vides an introduction to mathematical and computational thinking, exposure

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

53

to a variety of contemporary mathematical topics, and a discussion of societal
issues relating to security and privacy. An upper-level course on cryptogra-
phy is an appropriate elective for undergraduate majors in computer science,
mathematics, and engineering. For these students, cryptography provides an
important computational application of mathematics allowing them to inte-
grate a variety of concepts, some of which should be familiar and others new.

The subject of cryptography builds on a wide range of mathematical areas.
The notion of functions, their inverses, and functional composition are central
to any mathematical treatment of cryptography. Some classical codes like the
Spartan scytale and transposition ciphers are based on permutations. Modular
arithmetic provides the foundation for classical codes like shift and affine ci-
phers, as well as contemporary public-key methods. Probability and statistical
techniques can be used to crack many classical codes including polyalphabetic
substitutions like the Vigenère cipher and the Enigma machine. Matrices pro-
vide the basis for Hill ciphers and can be used in the description of other
cryptographic schemes. Boolean algebra is used to describe the linear feedback
shift registers employed in scrambling communication signals, the Data Encryp-
tion Standard (DES), and the hash functions used to verify digital messages.
The Advanced Encryption Standard (AES), the successor to DES, is based
on finite fields. Topics from number theory (Euclid’s algorithm, Fermat’s Lit-
tle Theorem, factoring, discrete logarithms) form the basis for understanding
the RSA and ElGamal public-key cryptosystems. Finally, the security of mod-
ern cryptosystems is assessed in terms of computational complexity using the
techniques of algorithm analysis.

A set of web-based tools has been designed and implemented to assist in
teaching and learning cryptography. The tools are assembled in a uniform en-
vironment for exploring topics typically covered in an introductory course. The
website includes applets for encryption, decryption, and cryptanalysis. Impor-
tantly, tutorial material about the techniques is also provided. The applets
allow users to trace visually, in a step-by-step manner, how the methods op-
erate. There are applets for classical substitution and transposition ciphers,
a simplified version of a block cipher (DES), Diffie-Hellman key agreement,
public key encryption (RSA), and hashing. Also included are tools to explore
underlying concepts from number theory such as modular arithmetic, modu-
lar exponentiation with the binary method and Fermat’s Little Theorem, and
greatest common divisor computation with the Euclidean and extended Eu-
clidean algorithms. There is also a version of Summerside Makerspace’s Uni-
versal Enigma Simulator[5]. In addition, computational support is provided
to help perform cryptanalytic attacks on classical ciphers and small instances
of public-key ciphers. Instructors can use the tools in the classroom to ex-
plain the algorithms and present examples. Students use the site to explore

54

the methods on their own, to solve problems, and to crack cryptographic chal-
lenges. The tools eliminate the need for students to write programs to perform
these computational tasks, enabling them to focus on important algorithmic
and mathematical ideas. At our institution, the tools have been used success-
fully in conjunction with a freshman honors course for non-majors and an
upper-level course primarily for computer science majors. The materials are
textbook-independent and texts that have been adopted for these courses in-
clude Barr[1], Beutelspacher[2], Cozzens and Miller[3], Holden[4], and Trappe
and Washington[7].

2 Affine ciphers

The first non-trivial cipher usually encountered in an introductory cryptogra-
phy course is the affine cipher. This method provides a good springboard for
discussing modular arithmetic, inverse functions, and greatest common divisors
(GCDs) and their computation.

Figure 1: Affine cipher tool

To facilitate a math-
ematical treatment of
cryptography, textbooks
adopt the conven-
tion of encoding let-
ters as numbers, with
the most common
scheme being A =
0, B = 1, C =
2, . . . , Z = 25.
An affine cipher en-
crypts a plaintext let-
ter x to the cipher-
text letter y using the
linear transformation
y = ax + b mod 26.
The key is a pair
of numbers (a, b) in
the range 0 to 25,
where a is the multi-
plier and b is a shift
amount. In order to
decrypt, the multiplier amust have an inverse a−1 mod 26; i.e., GCD(a, 26) = 1
and a · a−1 ≡ 1 mod 26.

The tool for encrypting and decrypting affine ciphers is depicted in Fig-

55

ure 1. After entering the key, the resulting ciphertext alphabet is shown below
the corresponding plaintext letters. By way of example, the plaintext letter
c encodes to 2 and y = ax + b = 7 · 2 + 11 = 25 gives the ciphertext let-
ter Z. The encryption of the word cryptology with key (7, 11) is shown in
the figure. A good exercise for students is to determine the decryption func-
tion, x = a−1(y− b) mod 26, then enter the corresponding multiplier and shift
amounts in the tool, and observe the alphabet used to decrypt a message. For
this example, x = 15y + 17 mod 26.

3 Vigenère cipher cryptanalysis

Monoalphabetic substitutions like the affine cipher easily succumb to letter
frequency attacks. In English, for example, the most commonly occurring letter
is E, followed by the letters T and A; X, J, Q, Z seldom occur. Polyalphabetic
ciphers like the Vigenère cipher were developed to circumvent such frequency
attacks.

An example considered in elementary cryptography courses is the Vigenère
cipher, which is just a sequence of shift ciphers. The ciphertext is found by
adding the numeric equivalents of the plaintext to those of the key modulo 26.

Maryhadalittlelamb plaintext
POEMPOEMPOEMPOEMPO key
BOVKWOHMAWXFASPMBP ciphertext

For example, M (12) + P (15) = B (27 ≡ 1 mod 26). The longer the keyword,
the better the letter frequencies of the ciphertext tend to be masked.

Cracking a Vigenère cipher is a two step process: (1) determining the length
of the keyword, and (2) determining the keyword itself by examining the fre-
quencies of letters in each coset. Ciphertext produced by a 4-letter keyword has
four cosets (one generated by each letter in the keyword). Both steps of the
cryptanalysis can best be explained through the notion of the index of coinci-
dence, I. This index provides a measure of how random the letter frequencies
are in a sample of text. If all 26 letters occur with equal probability, the index
is Irandom = 1/26 ≈ 0.0385. Due to the letter frequencies of English, however,
passages of text typically exhibit an index of coincidence that is much higher,
IEnglish ≈ 0.065.

Figures 2a and 2b illustrate a portion of the cryptanalysis of the first verse of
the nursery rhyme, “Mary Had a Little Lamb.” The process begins by reporting
a count of the letter frequencies in the ciphertext, along with its index of
coincidence and an estimate of the keyword length based on the index (not
shown). Although the estimate is good (4.26) for this example, the method is
often highly inaccurate. A more precise way to estimate the keyword length is
shown in Figure 2a. The ciphertext is divided into cosets up to some maximum

56

number—in this case 10. The average value of I over each of the cosets will
be close to IEnglish for the correct keyword length (or a multiple of it), and
approximately Irandom for incorrect keyword lengths. This is illustrated Figure
2a, which suggests the keyword size is 4 for the example.

Based on a keyword of length 4, Figure 2b shows the calculation that
produces the likely keyword, poem. The keyword is computed by taking dot
products of a 26-component vector containing the frequencies of the letters (A
through Z) in each coset with vectors containing shifts of the frequencies of the
letters in English. This product should be close to IEnglish for the shift corre-
sponding to the correct key letter and about Irandom for the other shifts. (See
Barr[1].) It is perhaps surprising that the keyword can be correctly determined
for the rhyme from such a small sample of ciphertext!

Figure 2: Output from the Vigenère tool

57

4 Block Ciphers and SDES

Advances in computing power have resulted in the Data Encryption Standard
(DES) being superseded by the Advanced Encryption Standard (AES). Un-
fortunately, an understanding of AES requires some knowledge of finite fields.
A simplified version of DES still provides an excellent vehicle for introducing
students to computer-based block ciphers.

Trappe andWashington[7] present a simplified version of DES, called SDES,
with almost all the features of DES. The toolkit includes an emulator that
depicts visually, in step-by-step fashion, a single round of SDES (see Figure 3).
The algorithm operates on 12-bit blocks consisting of two 6-bit characters. Each
round scrambles the right character of a block using 8-bits of a 9-bit key and a
pair of S-boxes. The 6-bit input character is first expanded to 8, and these bits
are XORed with the 8 key bits used in the current round. The result is then
divided into two 4-bit halves, which are used to index two S-boxes. The first
bit indicates the row, and the other 3 bits specify one of the 8 columns. The
appropriate 3 bits taken from each S-box are concatenated and then XORed
with the left input character of the block. The result is the right character
output for this round. The left character output is simply the right character
input, and it will be scrambled in the next round.

The emulator has a box where users enter a message to be enciphered. Since
6-bit characters are supported, the input can consist of lower case (a–z) and
upper case (A–Z) letters, digits (0–9), periods and spaces. There are boxes to
enter the 9-bit key and the number of rounds used to encipher a block.

An important pedagogic feature of the tool is that it can also be used for
decryption. Ciphertext from the output box can be fed back to the input box.
When the user selects “Decrypt,” the keys are used in reverse order, round by
round, to produce the original plaintext.

5 Hashing

Cryptographic hashing is a message validation and authentication technique.
The goal is to take a message of arbitrary size and produce a fixed size “digital
fingerprint.” Ideally, it should be virtually impossible to find another message
with the same hash value. Moreover, a small change in the message should
produce a hash value that appears to be entirely uncorrelated to the original.

Real-world hash functions are exceedingly complex, highly non-linear bit
scramblers. The hash function applet in the toolkit is by no means “industrial
strength,” but is intended to provide a “toy hash” that students use to get the
flavor of how hash functions operate.

The tool is depicted in Figure 4. It operates on 24-bit blocks of text con-

58

Figure 3: Simplified DES tool

sisting of four 6-bit characters, encoded the same way as the SDES tool. The
top row in the figure shows the initial 24-bit value of the hash—the characters
SHA1 in the example. This row is updated after each block is processed. The
second row shows the four characters and corresponding bits of the current
text block. In our example, the text is MD5, padded with a space to give the
block four characters. These two 24-bit strings are XORed and the result is
permuted, giving the bits corresponding to the character string O8vK. (The
user can customize the permutation used for each character. If it is desired to
keep things simple, this feature can be turned off.)

Next, each of the four 6-bit outputs in this row is intermixed with bits from
the outputs of the other three characters with another XOR. A 6-bit string is
formed by taking the first two bits of the character immediately to the right
(cyclically), the second two bits from the character to the right of that, and
the last two bits from the character to the right of that. Each pair of bits is
color coded in the applet to show where it originates. In the example, O8vK is
XORed with 0uOT to produce the hash value for this block, C09j. Utilizing bits
from the other characters creates a stronger hash.

As described above, the hash tool produces a Message Digest, where a
known initial value is used to verify the integrity of a message. The tool can
also be used to create a Message Authentication Code (MAC) by changing the
initial hash value or altering the permutations used after the first XOR. With
a MAC, the receiver can verify not only the integrity of a message but also the
authenticity of the sender. To do so, the initial hash value and the permutations
are agreed upon in advance and kept secret by the communicating parties.

59

Figure 4: Hashing tool

6 Public-Key Cryptography and RSA

In a public-key system, each user has a pair of keys: a public key that is known
to everyone, and a private key known only to the user. The public key is
published and used by everyone to send encrypted messages to the user. The
private key is used to decrypt messages enciphered with the public key. In order
for a public-key system to be secure, it must be computationally infeasible to
determine a private key knowing the corresponding public one.

The best known public-key cryptosystem is RSA[6]. Its security depends on
the difficulty of factoring an integer that is the product of two large primes, a
problem for which no efficient algorithm is known.

The toolkit contains an implementation of RSA for small sized primes (see
Figure 5). A user begins by entering two prime numbers, p and q. The tool then
calculates and reports two moduli,m and n, used by the algorithm:m = pq and
n = (p−1)(q−1). Next the user enters an encryption (public) exponent e that
is relatively prime to n. The tool next uses the extended Euclidean algorithm
to find the private decryption exponent d, which is the multiplicative inverse of
e mod n: ed ≡ 1 mod n. The applet reports d and the public key, or (e,m)-pair.
It also shows the block size b, or number of characters that can be enciphered
with a single application of the algorithm. This limit is determined by the value
of the public modulus m.

60

Figure 5: RSA tool

The user can now encode a mes-
sage as a sequence of b-digit numbers
modulo 29 (a prime). Space, period,
and comma are encoded as 0, 1 and
2; the letters A to Z are encoded as
3 through 28, respectively. (0 and 1
are problematic since they are un-
changed when raised to a power. This
is why the encoding of A has been
shifted from its usual position to 3.)
On the next line, users can encrypt a
number(s) x as y = xe mod m, or de-
crypt a number y as x = yd mod m.
On the last line, numbers can be
decoded back to text by reversing
the encoding process. Slashes (/) are
used to separate blocks. This allows
use of the tool as a decryption, as
well as encryption, device. Text con-
taining slashes can be entered on the
“Encode” line, and the tool deals appropriately with slashes when converting
to numbers.

7 Conclusion

The website includes many other cryptographic tools that are not described
due to lack of space. The authors have tried to convey the “look and feel” of
the environment here. For example, the demos for classical ciphers (shift, Hill,
Spartan scytale) resemble the tool for affine ciphers. The website has evolved
over a decade. New tools are continually added, as old ones are updated or
completely revamped. The SDES and RSA tools were originally implemented
as Java applets requiring a plug-in. As this approach to web development has
been deprecated, the tools were redesigned and implemented in JavaScript. In
the redesign, some features were improved and new ones added. The website
once had a Java applet simulating the Enigma machine. This was replaced with
Summerside Makerspace’s excellent Universal Enigma Simulator[5], adapted to
our site. The environment is a continuing work in progress. Plans are afoot to
implement a simplified version of the Advanced Encryption Standard (AES)
and a tool for the ElGamal public-key cryptosystem.

The website has been used many times in offerings of a general education
course for non-majors and an upper level course primarily for computer sci-

61

ence students. Classroom use of the tools and student feedback has informed
development of the environment over time. Experience has shown that an over-
whelming majority of students find the tools useful in learning cryptography
and enjoy working with them. Their use makes the subject come alive far more
than reading and studying about ciphers in a textbook. Students particularly
enjoy solving non-trivial cryptographic challenges with the tools.

The web toolkit is accessible at: https://www.cs.uri.edu/cryptography/

8 Acknowledgement

This project evolved from a set of tools developed by students in a gradu-
ate cryptography course at URI over a decade ago. One student in the class,
Surender Chiluka, approached the second author with the idea of improving
the tools, adding new ones, and collecting them on a website with an attractive,
uniform interface. Two other students, Krupesh Patel and Zach Oliveira, per-
formed major upgrades at different times by improving the code, incorporating
additional methods, and including a section of number theory tools. Finally,
the authors are grateful to the many students who have used the tools in classes
over the years for reporting bugs and for their helpful suggestions.

References

[1] Thomas H. Barr. Invitation to Cryptology. Prentice Hall, Upper Saddle
River, NJ, 2002.

[2] Albrecht Beutelspacher. Cryptology. Mathematical Association of America,
Washington, DC, 1994.

[3] Margaret Cozzens and Steven J. Miller. The Mathematics of Encryption.
American Mathematical Society, Providence, RI, 2013.

[4] Joshua Holden. The Mathematics of Secrets. Princeton University Press,
Princeton, NJ, 2018.

[5] Summerside Makerspace. Universal enigma machine simulator. https://
summersidemakerspace.ca/projects/enigma-machine/, 2020.

[6] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, February 1978.

[7] Wade Trappe and Lawrence C. Washington. Introduction to Cryptography
with Coding Theory (2nd ed). Prentice-Hall, Upper Saddle River, NJ, 2005.

62

Students’ Consistency in Computational
Modeling and Their Academic Success∗

Elena Izotova, Jason Kiesling, Fred Martin
Department of Computer Science
University of Massachusetts Lowell

Lowell, MA 01854
{eizotova,jkieslin,fredm}@cs.uml.edu

Abstract

In this study, an assessment was designed to measure consistency
in how subjects interpreted the effect of programming statements. The
assessment consisted of 24 multiple-choice items which tested student
interpretation of assignment and equality operators. Answers were ana-
lyzed to determine each subject’s “Consistency Score,” which represents
their consistency in this interpretation. The assessment was adminis-
tered to computer science undergraduates at a public research university
in the Northeast USA. The respondent results (n=128) were compared
to the students’ self-reported department GPA with the goal of deter-
mining whether consistency is correlated with student success. We found
a positive correlation between a student’s Consistency Score and their
department GPA, with strong significance. This suggests the use of this
instrument as a diagnostic for supporting students. This paper presents
the design of the assessment, how the Consistency Score is calculated,
and the study results.

1 Introduction

Student success rates in the introductory computer science courses at colleges
and universities worldwide are low. Research has indicated that it is typical for
about 30% of students to fail to successfully complete the first-semester course

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

63

[1]. At our institution we have similar outcomes. This problem is recognized to
be long-standing and one that is independent of language taught [12].

We suggest that understanding students’ computational mental modeling
may provide insight and an opportunity to address this problem. Computation
mental modeling describes the ways that a novice programmer justifies com-
puter behavior and explains how code works. Some common modeling errors
include believing that the computer has intuition, that all code runs simulta-
neously rather than in order, and that assignment empties and zeroes out one
variable into another [4].

No matter if a novice programmer forms models correctly or incorrectly,
their consistency may be an important indicator to support success in a com-
puter science classroom. If a student consistently believes an incorrect model,
all they may need is some guidance in the right direction. However, if a stu-
dent vacillates between conflicting models, this may make programming more
difficult.

This study examines the hypothesis that a student’s consistency of mental
modeling is correlated with their success in the academic program as measured
by their self-reported department GPA, with the goal of establishing the im-
portance of mental modeling in programming. This work is an important first
step at re-examining the way that computer science educators support stu-
dents. Students that are struggling in their computer science classes may need
additional guidance in their computational mental modeling so that they may
be more consistent.

2 Background

This section examines foundational literature on novice programmers, mental
modeling, and programming assessments.

2.1 Notional Machine and Mental Modeling

As introduced by du Boulay, the notional machine is “the general properties of
the machine that one is learning to control” [4]. Novice programmers often have
difficulties connecting the behaviors of the physical machine and the notional
machine, and consequently there are a number of common incorrect mental
models that novices form about the notional machine. Pea et al. explore the
common mistakes that programming students make as they learn about and
form their own mental models about the machine [8]. These prior works touch
on faulty or incomplete understanding of programming concepts, without ex-
amining other properties of a student’s knowledge systems. Instead of looking
at “right” or “wrong,” there may be other important aspects such as stability.

64

Although there are many different aspects to forming mental models, we
are most interested in how people solidify and become consistent in the for-
mation process. According to Johnson-Laird, people are able to stop searching
for alternative models when their models are able to form valid conclusions;
alternatively, people need to modify their mental models when they no longer
adequately explain input [5].

In general, novice students tend to have trouble synthesizing information
and generalizing knowledge. In order to expand the modeling process, Linn
suggests positive relationships between student competency and teaching code
templating, reusing code blocks, time spent debugging, and generalizing algo-
rithms [6]. Each of these activities listed help an individual learn to form their
own models of the notional machine, rather than memorizing a given set related
to a specific language. A typical curriculum, though, may begin with learning
and familiarizing language features, as opposed to introducing generalized de-
sign and problem solving concepts. This focus may be preventing students most
in need of these resources from developing confident mental modeling in new
environments.

A characteristic of a skilled programmer is the ability to quickly abandon
questionable assumptions, whereas a novice programmer tends to think with a
more narrow scope. Robins et al. [9], Stefik & Siebert [11] and others suggest
relationships between the choice of programming language and the success
of novice programmers. Much effort has been invested in finding the “best”
language to teach introductory computer science courses, but studies show that
choice of language does not evidently determine student success (e.g., [12]).
Perhaps a focus on student mental modeling as opposed to understanding the
syntax would have impact.

2.2 Programming Assessment

Our curiosity of consistency of mental modeling and how it relates to academic
success was seeded by prior work done by Dehnadi & Bornat [3, 2]. Their
studies suggest the possibility of a programming aptitude test. They compare
the results from their test to the academic success of students across multiple
institutions. The programming challenges on the exam were written in Java,
and consisted of one to three assignment operations.

We found it problematic to give programming challenges in an existing
programming language, in the case of prior knowledge interfering with the
results, and giving unfair advantages. To avoid these issues, we created our own
temporary language, out of pieces from multiple different languages. According
to a multi-national, multi-institutional study [13], it is possible to maintain
the difficulty level of a programming assessment across different languages.
Centrally, our study defines a “Consistency Score,” a percent score for rate of

65

Figure 1: Assessment Item #1

consistency. This extends prior work which categorized students into the binary
buckets of “consistent” or “inconsistent.”

3 Methodology

This section covers the form of the programming assessment, the way the an-
swers relate to mental models, and other choices made in the creation of the
instrument.

3.1 University Makeup and Instrument Administration

The University of Massachusetts Lowell (UMass Lowell or UML) is a public
research university in the Northeast United States. UMass Lowell offers more
than 100 Undergraduate programs, over 40 Master’s Programs, and over 30
Doctoral Degree Programs to more than 18,000 students. The assessment was
distributed to all 766 undergraduate computer science majors via email. Re-
spondents were given the incentive of a lottery to win one of ten $10 Amazon
gift cards for participation.

3.2 The Programming Assessment

The programming assessment used a bank of 24 multiple-choice items. The
items are given in an invented, single-use language with pieces from multiple
different languages with some pieces completely new. The goal of the exam is
to find consistency of computational mental modeling rather than determining
if a subject is “correct” or “incorrect.”

All subjects received the item presented in Figure 1 at the beginning of the
programming assessment. This item presents two variable declaration state-
ments (e.g., variable a := 5;) followed by a statement that is more open to
interpretation (b := a;). All subjects are thus exposed at the outset to this

66

Table 1: Models from Assessment Item #1

Answer Model
1 a=5, b=5 M1: := works as assignment
2 a=5, b=11 M2: := works as Boolean equality
3 a=0, b=5 M1, M3: := empties the right into the left
4 Error ME: Error

possibly new syntax, :=, and have the opportunity to be more flexible with
their modeling, minimizing false inconsistency.

Subsequently, each subject received the remaining items in a randomized
order, and subjects had a total of three minutes to complete the assessment.
The purpose of this instrument design was to ensure that subjects would invest
focused time in performing the assessment, and that each item was answered
approximately the same number of times. This did result in some subjects
answering more questions than others. Subjects answered between zero and 24
items.

Each multiple-choice answer follows one or more distinct computational
mental models. For example, a model may be that the := operator represents
assignment, while another may be that the := operator represents the Boolean
equality operator. The programming challenges are of various difficulty and
contain many different potential models, but each question contains either a
Boolean equality operator or an assignment operator. By the end of the as-
sessment, a subject obtains a series of percentages for each model: the number
of times the subject chose a multiple-choice answer representing a particular
model (the numerator) over the total number of times that model could be
selected in the questions that they answered (the denominator). These per-
centages represent the consistency with which the subject follows each model.
Ultimately, these two complementary models collected the largest quantity of
data, thus they were used to determine the overall Consistency Scores for each
individual.

The assessment item in Figure 1 is broken down into its model components
in Table 1. Each answer represents one or more models. In this example, answer
1 represents Model 1 (M1), which is the understanding that := is an assignment
operator. Answer 2 indicates Model 2 (M2): that := is a Boolean equality
operator. Answer 3 indicates two models: since we can observe the behavior
of an assignment operator transferring and emptying the source variable into
the other (M3), we can also conclude that the user believes that the := symbol
represents the assignment operator (M1). Answer 4 is a non-specific error model
(ME).

67

Table 2: Assessment Results for Three Subjects

CS GPA M1: := Assignment M2: := Boolean Consistency
1 3.75-4.0 19/19 = 100% 0/19 = 0% 100%
2 3.5-3.74 19/21 = 90.48% 2/21 = 9.52% 90.48%
3 2.5-2.74 12/19 = 63.16% 7/19 = 36.84% 63.16%

4 Analysis

This section presents the results and statistical analysis of the data collected
from distributing the programming assessment to a group of undergraduate
students at UML. From a population of 766 undergraduate computer students.
198 individuals completed the survey; these were filtered to 128 students who:
indicated they were current undergraduates, completed at least four items cor-
responding to models M1 and M2, and provided their department GPA.

4.1 Computation of Consistency Score

After coding each multiple-choice answer in the assessment to one or more
computational mental models, we automated the scoring process by running
the raw data through a program. After processing the data, we yielded a set
of 128 rows, where each row represents one subject.

The computational mental models used to determine the Consistency Score
for each subject were complementary, meaning that the percent consistency
for one model is naturally inverse to the percent consistency of the other. As a
consequence of the complementary nature, the consistency percentages range
from 50% to 100%, rather than 0% to 100%. The resulting Consistency Score
is the higher of the two percentages.

Table 2 shows the consistency data from three of the 128 subjects. We see
a range of consistency behaviors. Subject 1 self-reported a CS GPA of 3.75–
4.0, chose answers corresponding to M1 100% of the time, and chose answers
corresponding to M2 0% of the time. Subject 1 received a Consistency Score of
100%, and was completely consistent. Subject 2 self-reported a CS GPA of 3.5–
3.74, chose answers corresponding to M1 90.48% of the time, and chose answers
corresponding to M2 9.52% of the time. Subject 2 received a Consistency Score
of 90.48%, showing a slight pattern of deviation. Subject 3 self-reported a CS
GPA of 2.5–2.74, chose answers corresponding to M1 63.16% of the time, and
chose answers corresponding to M2 36.84% of the time. Subject 3 received a
Consistency Score of 63.16%, and exhibited inconsistent behavior. (Due to the
nature of the assessment, students did not have to answer each item and may
have answered items that did not test the M1 and M2 models. This gives each
subject a potentially different denominator.)

68

Figure 2: Average of Consistency Scores vs. CS GPA

4.2 Consistency Scores vs. Computer Science GPA

Initially, to see if our data showed a correlation between CS GPA and Consis-
tency Scores, we graphed the average Consistency Scores within larger GPA
buckets. As seen in Figure 2, the general CS GPA and Consistency Scores show
a positive correlation.

To more deeply analyze whether the correlation indicated by the graph
is meaningful, we used Spearman’s correlation: “Spearman’s correlation coeffi-
cient, (ρ, also signified by rs) measures the strength and direction of association
between two ranked variables” [7].

We organized our data set arranging each subject in rank orders of Consis-
tency Score and CS GPA. Owing to the nature of the GPA data and Consis-
tency Scores, we ended up with a number of tied ranks. These ranks were
used to calculate an rs value of 0.317 as the correlation between the
128 individual Consistency Scores and CS GPA. This value indicates
the existence of a monotonic association [10].

Based on the number of participants (n=128), we calculated the p-value of
this correlation to be p=0.00026. Given this result, we can conclude that the
null hypothesis, that there is no association between CS GPA and consistency of
mental modeling, is extremely unlikely. Thus we conclude with extremely
high likelihood that there is positive correlation between consistency
of mental modeling and CS GPA at our institution.

5 Discussion

This section talks about the implications of this study, current practices, and
possibilities for moving forward.

69

5.1 Existing Assessments

Assessments currently used on students to determine success only provide in-
sight to the outcome of a student’s thinking, rather than the thought process
along the way. Because of the nature of introductory computer science courses,
the outcome measured on course exams is bound by interpretation and un-
derstanding of language-specific syntax. Answers outside of the correct answer
are thrown out and not seen as valuable, when in reality, all incorrect answers
provide insight. The assessment used in this study aimed to have no correct
or incorrect interpretation: all answers revealed the underlying formation of
mental models in each subject. The particulars of the syntax are new to all
subjects to not advantage those with language familiarity, so all students tak-
ing this assessment are on a level playing field.

5.2 Consistency and Success

Consistency of mental modeling, or being able to properly follow a mental
model, is especially important for computer science students. From our as-
sessment, we can see that consistency is related to academic success within
the Computer Science department at our institution. From our experience in-
teracting with CS students in introductory level courses, we have sometimes
observed students communicating beliefs that overlap with each other in in-
consistent and incongruent ways, preventing them from forming a consistent
underlying mental model. This issue spans many different concepts such as
variables, assignment, pointers, arrays, recursion, and so on. These inconsis-
tencies inhibit other aspects of learning, such as being able to debug one’s own
code.

5.3 Current Teaching

Most introductory computer science courses are centered around learning and
familiarizing language features, rather than generalized concepts. Currently,
there is no or limited formal teaching of the notional machine in a typical
classroom. Students are expected to form their own mental models and concept
of the notional machine through understanding language-specific syntax, and
not vice versa. Students that show more than just slight deviation in their
consistency results on this assessment, or students that are struggling in their
coursework and exams, may need additional support in generalized concepts
and mental model building, rather than the typical syntax centered teaching.

70

5.4 Using These Results

The goal of this study was to determine factors to assist intervention programs
in improving student success. The instrument we developed could be adminis-
tered to students early in their computer science degree progress, and used for
diagnostic purposes before students have stable or predictive GPAs. Students
with low Consistency Scores can still be successful; such a student may benefit
from additional support and resources. We want to guide resources to those
students who need them the most.

By being able to better understand what factors impact a student’s educa-
tion, universities are able to identify the students with the highest needs before
they begin to struggle therefore improving retention rates, raising the average
GPA, and having more students successfully graduate.

The assessment used in this study was designed to be easily reproduced
and modified to allow other institutions to conduct similar studies on their
student populations to determine which factors are prevalent within their own
universities as well as across all computer science students as a whole.

6 Conclusions and Future Work

6.1 Conclusions

We developed a programming assessment that defines a metric of consistency,
the Consistency Score. Our assessment employed items that evaluated subjects’
consistency of interpretation of operator behavior. Using a Spearman’s correla-
tion, we concluded with very high likelihood that there is a positive correlation
between students’ consistent mental modeling and GPA performance.

This suggests that some lower-performing students may not be using a con-
sistent mental model. Teaching the notional machine and mental modeling may
result in higher student achievement and more effective future programmers.

This instrument provides insight into how to better support students and
raise academic success.

6.2 Future Work

Our goal is to have this study improved based on lessons learned and repro-
duced both at University of Massachusetts Lowell and at other universities.
We suggest the following extensions to strengthen the results of this study: (1)
Examine whether mental modeling consistency improves over the course of an
undergraduate’s career; (2) Revise the programming assessment to more pre-
cisely examine additional models; (3) Support other institutions in replicating
this study to confirm results and discover trends across institutions.

71

References

[1] Jens Bennedsen and Michael E. Caspersen. Failure rates in introductory
programming: 12 years later. ACM Inroads, 10(2):30–36, April 2019.

[2] Richard Bornat and Saeed Dehnadi. Mental models, consistency and pro-
gramming aptitude. Conferences in Research and Practice in Information
Technology Series, 78, 01 2008.

[3] Saeed Dehnadi. Testing programming aptitude. 09 2006.

[4] B. du Boulay. Some difficulties of learning to program. Journal of Educa-
tional Computing Research, 2:57–73, 1986.

[5] Philip Johnson-Laird. Deductive reasoning. Annual Review of Psychology,
50(1):109–135, 1999.

[6] Marcia Linn. The cognitive consequences of programming instruction in
classrooms. Educational Researcher, 14:14–29, 05 1985.

[7] Lund Research Ltd. Spearman’s rank-order correlation, 2018. Retrieved
May 2020 from https://statistics.laerd.com/statistical-guides/spearmans-
rank-order-correlation-statistical-guide.php.

[8] R. Pea, E. Soloway, and J. Spohrer. The buggy path to the development
of programming expertise. Focus on learning problems in mathematics,
9:5–17, 1987.

[9] Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and
teaching programming: A review and discussion. Computer Science Edu-
cation, 13:137–, 06 2003.

[10] Patrick Schober, Christa Boer, and Lothar A. Schwarte. Correlation co-
efficients. Anesthesia & Analgesia, 126(5):1763–1768, May 2018.

[11] Andreas Stefik and Susanna Siebert. An empirical investigation into pro-
gramming language syntax. ACM Transactions on Computing Education
(TOCE), 13, 11 2013.

[12] Christopher Watson and Frederick W.B. Li. Failure rates in introductory
programming revisited. In Proceedings of the 2014 Conference on Inno-
vation & Technology in Computer Science Education, ITiCSE ’14, page
39–44, New York, NY, USA, 2014. Association for Computing Machinery.

[13] Jacqueline Whalley. CSEd research instrument design: the localisation
problem. 01 2006.

72

The Effects of Mixed Reality Immersion
on Users’ Performance and Perception of

Multitasking While Performing
Concurrent Real World Tasks∗

Sarah North1, Max North 2, David Garofalo3,
and Durgesh Parajapati1

1Computer Science Department
2Information Systems and Security Department

3Department of Physics
Kennesaw State University

Kennesaw, GA USA
{snorth, max, dgarofal}@kennesaw.edu

Abstract

The purpose of this preliminary research was to investigate the user’s
multitasking performance on concurrent tasks while immersed in the
mixed reality environment. Twenty-one (n=21) university students, be-
tween 18 and 27 years of age, were randomly selected to serve as partic-
ipants. Each research subject participated in comparative experiments
where certain tasks were designed to measure the participant’s visu-
ospatial cognition, listening and retention, and logical cognition through
arithmetic proficiency while concurrently performing a secondary task.
The result of the preliminary experiments indicates the presence of a neg-
ative effect on overall effectiveness when multitasking while immersed
in a mixed reality environment. Consequently, this research has direct
implications for teaching and learning in a variety of educational envi-
ronments.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

73

1 Introduction

Mixed Reality (MR) immersion is defined as a technology that allows users to
interface with a digital visual representation of information overlaid on top of
the real world (e.g., Microsoft HoloLens is capable of inducing such an environ-
ment). However, being immersed in an augmented reality requires a measure
of the attention that can distract the user from tasks in the real world, and
may possibly be detrimental to the performance effectiveness on both tasks in
virtual or real environment. Thus, investigating and testing the user’s effective-
ness in a specific environment measuring their visuospatial cognition, listening
and retention, and arithmetic proficiency.

1.1 Technical Terminologies and Definitions

The following terminologies are provided to clarify the basic differences between
several comparable, but interrelated technologies associated to this research.
Virtual Reality (VR) immerses users in a fully artificial digital environment.
Augmented Reality (AR) overlays virtual objects on the real-world environ-
ment. Mixed reality (MR) not just overlays but anchors virtual objects to the
real world [1, 5, 12, 4].

Extended MR description - MR brings together real world and digital
elements. In MR, user interacts with and manipulates both real and virtual
objects and environments, using various sensing and imaging technologies. MR
allows user to see and immerse herself in the world around her even as she
interacts with a virtual environment using her own body (e.g., hands or feet).
It provides the ability to have one foot (or hand) in the real world, and the
other in an imaginary place, breaking down basic concepts between real and
imaginary, offering an experience that can change the way user does tasks
[2, 16, 17]. As stated by the Intel [2], “The border between the virtual and real
world continues to break down."

1.2 Concise Literature Review

One of the perceptible and applied articles reporting distraction levels of mixed
reality devices is “Calling while Driving Using Augmented Reality: Blessing or
Curse?” which dealt with how distracting augmented reality was when used by
the driver of a vehicle for a video call [9]. It revealed that augmented reality
provided minimal distraction in the scenario, but offered the caveat that the
video feed was placed out of the driver’s field of view, so it would require looking
away from the road in order to see the person on the other end of the call. The
experiment showed that in such a scenario the participants were able to focus
on the road and chose not to look at the video feed of the other person, as that

74

would be dangerous. This article shows that the presence of augmented reality
is not inherently distracting, if the application being used can be kept out of
the field of view when attention is needed in the real world.

Furthermore, several researchers [8, 7, 14] report measuring visual search
and distraction in immersive virtual reality; stating, “Immersive virtual reality
provides control over stimuli and conditions at increased ecological validity.”
The main aim of this research study was to accomplish a transfer of traditional
paradigms that assess attention and distraction to immersive virtual reality. Re-
searchers utilized common objects (e.g., objects in a virtual kitchen) as stimuli
to increase the ecological validity of exploring attentional effects. The experi-
ment demonstrated evidence of a successful translation of traditional paradigms
and manipulations into immersive virtual reality and provided a clear outline
for future studies in this field (see [10, 11] for further details).

More specifically, in an investigation with the title of “The Effects of Im-
mersion and Real-World Distractions on Virtual Social Interactions”, [13] re-
searchers conducted an experiment. Selected participants interacted with a
virtual agent in an immersive virtual environment or non-immersive virtual
environment while introduced to three different levels of real-world distrac-
tions (i.e., no distraction, passively being exposed to the sound of a ringing cell
phone, and actively responding to ringing cell phone). Their verbatim findings
suggested that real-world distractions had a negative effect on recognition, re-
call, and social presence; and increased immersion did not uniformly improve
social virtual reality experiences.

A stimulating, and yet practical article with the title of “Multitasking and
Prospective Memory: Can Virtual Reality be Useful for Diagnosis?” precisely
investigated and demonstrated the utility of virtual reality technology in order
to detect prospective memory problems after traumatic brain injury [3]. The
results of the experiment showed, as elsewhere [18, 6], that the realization of
delayed intention for both experimental and control groups was normal. How-
ever, the researchers reported, “TBA the traumatic brain injury participants’
executive dysfunctions could be detected in the way they had difficulties in
managing well the interference and cognitive overload generated by the multi-
tasking condition.”

As the field and applications of the mixed reality expands, the multitasking
is becoming one the important components of this environment. In addition,
multitasking seems to be growing with advances and availability of tech de-
vices. Multitasking is all around us and frequently contributes to performance
of tasks effectively and efficiently. However, there are situations that multitask-
ing may be very harmful. In general, according to Salvucci and Taatgen [15],
“. . .multitasking activities views each activity in terms of the time between
task switches, or typical time spent on one task before switching to another.”

75

Hence, in this research study, authors explore the effects of mixed reality im-
mersion on users’ experience of multitasking in a virtual environment while
performing concurrent tasks in real world. Since this is a preliminary novel re-
search, the research question and null hypothesis have intentionally been kept
simple and limited.
Experimental Research Questions:
RQ-1 - Does mixed reality immersion have effect on users’ performance of
multitasking while performing on concurrent real world Tasks?
RQ-2 - Does mixed reality immersion have effect on users’ perception of mul-
titasking while performing on concurrent real world Tasks?

Null Hypotheses:
H0-1 - Being immersed in mixed reality has no significant effect on users’ per-
formance of Jigsaw Puzzle multitasking while performing on concurrent real
world tasks.
H0-2 - Being immersed in mixed reality has no significant effect on users’
perception of Jigsaw Puzzle multitasking while performing on concurrent real
world tasks.
H0-3 - Being immersed in mixed reality has no significant effect on users’
performance of Listening & Retention multitasking while performing on con-
current real world tasks.
H0-4 - Being immersed in mixed reality has no significant effect on users’ per-
ception of Listening & Retention multitasking while performing on concurrent
real world tasks.
H0-5 - Being immersed in mixed reality has no significant effect on users’
performance of Mathematical multitasking while performing on concurrent real
world tasks.
H0-6 - Being immersed in mixed reality has no significant effect on users’
perception of Mathematical multitasking while performing on concurrent real
world tasks.

2 Research Design Methodology

2.1 Participants

Twenty-one (n = 21) university students both female and male, ages 18 to
27, were selected randomly from different disciplines from two campuses of
university to serve as participants. There were disproportionately more males
than females (16-5).

76

2.2 Apparatus

The experiments used Microsoft HoloLens to create mixed reality scenarios
(see Figure 1). In addition, an array of laptops and other electronic devices
were presented to support multitasking and data collections in real-time for
the experiment.

Figure 1: A participant wearing HoloLens and immersed in mixed reality while
performing real world concurrent multitasking activities.

2.3 Instruments for Experimenting Various Multitasks

Three varieties of a Jigsaw Puzzle were used for a portion of the visuospatial
experiment. These were a 25-piece puzzle designed for younger children, but
could provide a challenge to an adult under a short time limit while distracted
by a secondary task. The Listening & Retention experiments were conducted
with a pair of earbuds for use along with the mobile app English Listening
Practice. The difficulty of the spoken narration was set to the category Level
B1 (Intermediate) of the Common European Framework of Reference for Lan-
guages (CEFR). A Mathematical assessment was conducted for the arithmetic
proficiency portion of the experimenting and measuring with flash cards. The
participants had to verbally answer as much addition, subtraction, multiplica-
tion, and division questions correctly as they could within the allotted time.
Accompanying these three experiments was a secondary task that had to be
performed concurrently. Each participant was challenged to maximize the score
playing a level in the Candy Crush Soda (a popular puzzle game from King, the
makers of Candy Crush Saga) twice per experiment on two separate devices.

2.4 Procedure for Experiments

Participants were engaged in the experimental phase individually and were
briefed regarding the purpose of the study. Participants were asked to fill out

77

a pre-experiment survey regarding any previous experience with the mixed
reality (e.g., Microsoft HoloLens environment), and the game Candy Crush
Soda. The participants, who did not have an experience with either above
environments, were given an ample amount of time to get familiar with both.
Whenever participants completed a task before the timer ran out, a bonus
point was added to their total score. The bonus points were calculated using
the following formula: Bonus Points = Base Score * Time remaining in seconds
/120.

A control experiment was initiated to collect a baseline data for each task of
the study for each participant. Each experiment was limited to two minutes and
only the correct answers were counted in their score. The visuospatial cognition
experiment challenged each subject to put together a 25-piece puzzle within
the time limit. Participants who completed the task before the time limit were
given another set of a 25-piece puzzle to solve. For the Listening and Retention
portion of the control experiment, the participants were required to listen to
a 60-second narration twice. The round of Candy Crush Soda game would
then be stopped for participants who answered five open-ended questions, read
to them by the experiment conductor, based on the spoken narration. The
participants were asked to verbally answer as many mathematical problems
as they could for the arithmetic proficiency control experiment after a flash
card with a problem was shown and read to them. The mathematical problems
encompassed simple addition, subtraction, multiplication and division. Finally,
the participants were asked to play two rounds of Candy Crush Soda game
within the time limit; on a touchscreen laptop and within a mixed reality while
wearing the HoloLens.

The subsequent phase of the study examined the participant’s proficiency
when asked to complete two unrelated tasks concurrently within a time limit.
Participants wore gear (i.e., HoloLens – See Figure 1 in next section) and
entered the mixed reality environment while encouraged to take part in the
following specific experiments. The first set involved the completion of the
visuospatial cognition experimenting with 25-piece jigsaw puzzle while playing
a level in Candy Crush Soda on a touchscreen laptop and a second time again on
a mixed reality environment using the HoloLens. The participants were urged
to dedicate equal and alternating attention between tasks. After completion of
both experiments, the participants were given a pre-experiment survey with
questions about their performance. The next two set of experiments replicated
the preceding set of experiments but for the listening and retention assessments
and again with the arithmetic proficiency assessment. A set of post-experiment
survey questions were administered after the final period was concluded.

78

3 Results and Analysis

3.1 Pre-Experiment Survey

The pre-experiment survey data showed the distribution of the prior skills the
participants had that could potentially have aided them in this research ex-
ploration. Collectively, the participants leaned slightly towards having some
proficiency with using the HoloLens. Regardless of their proficiency, all par-
ticipants were given a chance to get adjusted to the HoloLens’ controls. The
pre-experiment survey showed that there was an even distribution between
participants who were familiar with the game Candy Crush Soda and those
who were not. Once again, they were given the option to play the tutorial
stages of the game before the control experiment could begin. In regard to the
distribution of each participant’s comfort level with multitasking, the partici-
pants were less comfortable with multitasking as a group. Despite the varying
levels of expertise the participants had for this study, their results are still vi-
able for the conclusion since their skill level remained the same throughout the
experiments.

3.2 Candy Crush Soda Analysis

All the participants’ scores for the Candy Crush Soda game on any particu-
lar category, the average scores, the standard deviations (S.D.) and analysis
are shown in Table 1 and depicted in Figures 2 and 3. Predictably, there is a
significant decrease in performance when comparing the result from multitask-
ing scores with the control experiment (no multitasking) results. The Jigsaw
puzzle multitasking experiment displayed the most significant drop; a 91% de-
crease for the HoloLens and an 87% for the laptop category. The second worse
performing category is from the Mathematical assessment with an 83% drop
for the HoloLens and a 50% for the laptop. The emphListening & Retention
portion experiment scored better with a 50% drop for the HoloLens and 11%
for the laptop.

Out of all the trials that involved the task of playing Candy Crush Soda,
participants were able to complete the level before the two-minute time limit
was up only a few times.

3.3 Multitasking Experiment Analysis

The participants filled out a post-puzzle questionnaire before beginning the
next experiment set. When asked about the challenges of multitasking with a
laptop while solving a Jigsaw Puzzle, some of the open-ended responses empha-
sized an inability to focus on both things at once and the difficulty of switching
between the puzzle and the laptop. The same question was asked but with the

79

Figure 2: The multiple graph shows comparison of three assessments (Jigsaw
Puzzle, Listening & Retention, and Mathematical) with control group scores
for Hololens and laptop multitasking experiments.

Figure 3: Graph showing comparison of the Candy Crush Soda scores between
the HoloLens and laptop by three types of multitasking experiments (Jigsaw
Puzzle, Listening & Retention, and Mathematical). Control experiment column
graphs shows non-multitasking experiment.

80

Table 1: Depicting the numerical scores analysis (two sampled t-test; P-value)
of the HoloLens and laptop grouped by the three types of multitasking exper-
iments.

HoloLens experiment. Several participants noted the difficulty of expressing
the selection command to the HoloLens headset while another said that the
weight of the HoloLens on their head hindered their performance.

For all the participants in the Jigsaw Puzzle experiment, 95% of them per-
ceived that the laptop was better suited for Jigsaw Puzzle task than HoloLens
(5%). Simply, H0-2 was rejected and thus there was a statistically significant
difference in perception of users using HoloLens versus laptop.

Jigsaw Puzzle Experiment Analysis

Reflecting an outcome similar to the Candy Crush Soda results, multitasking
with the laptop scored higher than multitasking with the HoloLens with only
a 36% drop compared to 45% respectively (see Table 1 and Figures 2 & 3).

81

Figure 4: Participants perceived laptop device to be better suited for Jigsaw
Puzzle experiment over HoloLens.

Further, the statistical analysis of comparison between HoloLens+Jigsaw ex-
periment versus Laptop+Jigsaw experiment showed a statistically significant
difference (t = 2.78; p = 0.0082; df = 40), concluding that users performed
better with Laptop than HoloLens (immersive mixed-reality). Overall, the hy-
potheses H0-1 was rejected for mixed reality experiment using Jigsaw multi-
tasking, concluding that being immersed in mixed reality has no significant
effect on users’ performance of multitasking while performing on concurrent
real world task (i.e., Jigsaw Puzzle). It must be noted that the Jigsaw scores
were not statistically significantly different (t = 0.93; p = 0.3564; df = 40)
between mixed-reality and control experiments.

For all the participants in the Jigsaw Puzzle experiment, 95% of them per-
ceived that the laptop was better suited for Jigsaw Puzzle task than HoloLens
(5%); (see Figure 4). Simply, H0-2 was rejected and thus there was a statisti-
cally significant difference in perception of users using HoloLens versus laptop.

Listening and Retention Experiment Analysis

Once again, the results showed that the decrease in the participants’ score is
less when multitasking on the laptop as opposed to the HoloLens while keeping
attention to auditory information. The performance while multitasking with
the HoloLens dropped 53% while the drop with the laptop was only 35% (see
Table 1 and Figures 2 & 3 in prior section). Moreover, the statistical anal-
ysis of multitasking comparison between HoloLens+Listening and Retention
experiment versus Laptop+Listening and Retention experiment indicated that
there was a statistically significant difference (t = 4.152; p = 0.0002; df = 40),
concluding that users performed extremely better with Laptop than HoloLens

82

Figure 5: Participants perceived laptop device being better suited for Listening
& Retention experiment over HoloLens.

(immersive mixed-reality). Overall, the hypotheses H0-3 was rejected for mixed
reality experiment using Listening and Retention multitasking, concluding that
being immersed in mixed reality has significant effect on users’ performance of
multitasking while performing on concurrent real world task (i.e., listening and
Retention). It must be noted that the Listening and Retention scores were
statistically significantly different (t = 2.789; p = 0.0080; df = 40) between
mixed-reality and control experiments.

After the Listening and Retention experiment was conducted, the partici-
pants answered questions on the challenges faced when using the laptop, indi-
cating they had problems focusing and dividing their attention between playing
the game and Listening and Retention. One participant commented that the
questions about the narration itself were too vague. Regarding the multitask-
ing difficulty with the HoloLens, the difficulty focusing and using the HoloLens
commands were mentioned again.

While the participants still preferred the laptop as their device of choice
for this research, a quarter of the participants perceived that when it comes to
Listening and Retention, they performed better when using the HoloLens (see
Figure 5 above). In this case, H0-4 was rejected and there was a statistically
significant difference in perception of users using HoloLens versus laptop.

Mathematical Experiment Analysis

Continuing the pattern as that of the previous experiments, multitasking has
the least negative effect on tasks performed on the laptop compared to those on
the HoloLens when it came to solving simple Mathematical problems in experi-
ment. There was a decrease of 35% in performance with the HoloLens and 19%
with the laptop (See Table 1 in prior section). Furthermore, the statistical anal-

83

Figure 6: Participants perceived laptop device being better suited for Mathe-
matical experiment over HoloLens.

ysis of comparison between HoloLens+Mathematical multitasking experiment
versus Laptop+Mathematical experiment showed a statistically significant dif-
ference (t = 6.588; p = 0.0001; df = 40), concluding that users performed ex-
tremely better with Laptop than HoloLens (immersive mixed-reality). Overall,
the hypotheses H0-5 was rejected for mixed reality experiment using Mathemat-
ical multitasking, affirming that being immersed in mixed reality has significant
effect on users’ performance of multitasking while performing on concurrent
real world task (i.e., Mathematical). It must be noted that the Mathematical
scores were statistically significantly different (t = 2.041; p = 0.0479; df = 40)
between mixed-reality and control experiments.

Lastly, the participants responded to the post-mathematical survey. Being
unable to focus was once again a problem for the participants for both devices.
For the laptop, a few participants mentioned that the time spent looking at
the math problem was consuming. A similar problem was brought up with the
HoloLens when others said that the headset was obstructive when viewing the
flashcards.

Similar to the prior result, a majority of the participants still selected the
laptop and a quarter chose the HoloLens as their preferred device (see Figure 6).
Basically, H0-6 was rejected and there was a statistically significant difference
in perception of users using HoloLens versus laptop in this experiment.

3.4 Post-Experiment Survey

At the completion of all the experimental portion of the research, the partici-
pants filled out the post-experimental survey.

Much of the difficulty that some of the participants faced while using the
HoloLens was from the headset not being able to detect their hand gesture

84

Figure 7: Graph showing the participants responses on whether or not they
thought they had received adequate time to learn how to use the HoloLens
(scale of 1 to 5).

and therefore failing to register an input command. The one negative ques-
tion response could be attributed to the participant’s unfamiliarity with the
headset’s quirks. During the experimenting, a few participants realized that the
game awarded the player extra bonus points that slightly influenced the scoring
giving the participants more points than anticipated. However, the extra bonus
points were not statistically significant; thus were not considered in analysis
by researchers. The majority of the participants believed that they were given
adequate preparation to play Candy Crush Soda with 25% not swaying one
way or the other based on Figure 7.

When asked about which multitasking experiment gave them the most trou-
ble when accompanied with the HoloLens, the participants were mostly split
between the Jigsaw Puzzle and the Listening and Retention experiment (see
Figure 8). This result is supported by the fact that both experiments displayed
the most decline in score when compared to each respective control experi-
ment while the Mathematical experiment showed the least amount of decrease.
Running counter to the result, however, in the accompanying Candy Crush
Soda multitasking experiment for the Listening and Retention showed the least
amount of decline compared to the other two multitasking experiments.

As one can surmise, the participants picked the Mathematical multitasking
experiment as the challenge that gave them the least amount of problems when
paired with the HoloLens.

Lastly, the participants were asked an open question on which device they
would prefer to use in a professional setting and why. All of the participants

85

Figure 8: The distribution of multitasks with which the participants struggled
most while using the HoloLens.

preferred the laptop as their device of choice. Their response ranged from con-
trol and input issues that they’ had encountered with the HoloLens to the
weight of the headset being too heavy, just to report a few.

As a final note, the complete results and analysis of pre- post-surveys are
not reported here. Future research report will be presented by extended and
detailed analysis.

4 Discussion and Conclusion

This research attempted to answer the general research question of “Does be-
ing immersed in mixed reality have effect on users’ performance and perception
of multitasking on concurrent real world tasks". Analysis of the results from
the preliminary rounds of experimenting showed a trend supporting evidence
to answer some aspects of the above research question. For all multitasking
challenges performed in a mixed reality environment, those results scored con-
sistently lower than multitasking challenges performed in the real world, a
common sense expectation. All the participants’ performances also supported
this assertion as none of them expressed an interest in using the HoloLens in a
professional setting. However, due to time constraints, only a limited number of
participants (n = 21) could complete their experiments and more participants
are needed to appropriately support the study’s questions and hypothesis.

The time constraints issue was exacerbated by the length of time to com-
plete each trial within each experiment. Possible experimenting fatigue due to
the repetitive nature and length of the experiments should also be investigated.
Additionally, limitations of an immature technology should also be considered

86

as the interfacing with the HoloLens headset could potentially be improved
with continual hardware and software improvement.

As mentioned in the prior section, during the course of this research, it
was discovered that the Candy Crush Soda game could award additional bonus
points when the level was solved completely providing a possible uneven result.
It is advised that future research should develop two proprietary applications
of similar design for the HoloLens and for the laptop that would challenge the
participants and yield rational results.

This research investigated three types of multitasking to rigorously exper-
iment the effects of multitasking in a mixed reality environment. For future
studies, decomposing this research design into three separate investigations
could bring better focus and attention to each area. Consequently, this research
has direct implications for teaching and learning in a variety of educational en-
vironments.

Acknowledgment

The initial theoretical and graphical design of visualization component of this
research was conducted at Visualization & Simulation Research Cluster/Lab-
oratory that was founded by an equipment grant from the U.S. Department of
Defense (DoD)/U.S. Army Research Office (ARO). The content of this work
does not reflect the position or policy of the DoD, ARO, NSA, or IDS and
no official endorsement should be inferred. Authors thank Andrew Roland,
Jonathan Parks, and Rico Santiago for their initial research and assisting in
experimental phases of this research. Ultimately, authors express gratitude to
all the reviewers for their constrictive and technical suggestions.

References

[1] The difference between virtual reality, augmented reality and mixed real-
ity. https://www.forbes.com/sites/quora/2018/02/02/the-difference-between-
virtual-reality-augmented-reality-and-mixed-reality/.

[2] Virtual reality vs. augmented reality vs. mixed reality demystifying the virtual
reality landscape. https://www.intel.com/content/www/us/en/tech-tips-and-
tricks/virtual-reality-vs-augmented-reality.html.

[3] Frederic Banville, Pierre Nolin, Sophie Lalonde, Mylene Henry, Marie-Pier Dery,
and Rene Villemure. Multitasking and prospective memory: can virtual reality
be useful for diagnosis? Behavioural neurology, 23(4):209–211, 2010.

[4] Mark Billinghurst and Hirokazu Kato. Collaborative mixed reality. In Pro-
ceedings of the First International Symposium on Mixed Reality, pages 261–284,
1999.

87

[5] Răzvan-Alexandru Călin et al. Virtual reality, augmented reality and mixed
reality-trends in pedagogy. Social Sciences and Education Research Review,
5(1):169–179, 2018.

[6] Tanya Denmark, Jessica Fish, Ashok Jansari, Jignesh Tailor, Keyoumars
Ashkan, and Robin Morris. Using virtual reality to investigate multitasking
ability in individuals with frontal lobe lesions. Neuropsychological rehabilitation,
29(5):767–788, 2019.

[7] Adam Greenfeld, Artur Lugmayr, and Wesley Lamont. Comparative reality:
Measuring user experience and emotion in immersive virtual environments. In
2018 IEEE International Conference on Artificial Intelligence and Virtual Real-
ity (AIVR), pages 204–209. IEEE, 2018.

[8] Andrew L Kun, Hidde van der Meulen, and Christian P Janssen. Calling while
driving using augmented reality: Blessing or curse? PRESENCE: Virtual and
Augmented Reality, 27(1):1–14, 2019.

[9] Andrew L Kun, Hidde van der Meulen, and Christian P Janssen. Calling while
driving: An initial experiment with hololens.(2017). 2017.

[10] Nilli Lavie. Attention, distraction, and cognitive control under load. Current
directions in psychological science, 19(3):143–148, 2010.

[11] Nilli Lavie. Attention, distraction, and cognitive control under load. Current
directions in psychological science, 19(3):143–148, 2010.

[12] Max M North, Sarah M North, et al. Dynamic immersive visualisation environ-
ments: enhancing pedagogical techniques. Australasian Journal of Information
Systems, 23, 2019.

[13] Catherine Oh, Fernanda Herrera, and Jeremy Bailenson. The effects of immer-
sion and real-world distractions on virtual social interactions. Cyberpsychology,
Behavior, and Social Networking, 22(6):365–372, 2019.

[14] Bettina Olk, Alina Dinu, David J Zielinski, and Regis Kopper. Measuring visual
search and distraction in immersive virtual reality. Royal Society open science,
5(5):172331, 2018.

[15] Dario D Salvucci and Niels A Taatgen. The multitasking mind. Oxford University
Press, 2010.

[16] Stephan Schütze and Anna Irwin-Schütze. New Realities in Audio: A Practical
Guide for VR, AR, MR and 360 Video. CRC Press, 2018.

[17] Christopher Stapleton and Jannick Rolland. Mixing realities at ismar 2009:
Scary and wondrous. IEEE computer graphics and applications, 30(3):89–95,
2010.

[18] Siobhan Sweeney, Denyse Kersel, Robin G Morris, Tom Manly, and Jonathan J
Evans. The sensitivity of a virtual reality task to planning and prospective
memory impairments: Group differences and the efficacy of periodic alerts on
performance. Neuropsychological Rehabilitation, 20(2):239–263, 2010.

88

Supporting Computing Accessibility
Education

Using Experiential Learning Labs∗

Conference Tutorial

Saad Khan, Samuel Malachowsky, Daniel Krutz
Department of Software Engineering
Rochester Institute of Technology

Rochester, NY 14623
{sk6786,samvse,dxkvse}@rit.edu

Abstract

Our Accessibility Learning Labs not only inform participants about
how to properly create accessible software, but also demonstrate the need
to create accessible software. These experiential browser-based activities
enable students, instructors and practitioners to utilize the material using
only their browser. This tutorial will benefit a wide-range of participants
in the software engineering community, from students to experienced
practitioners who want to ensure that they are properly creating inclu-
sive, accessible software. Complete project material is publicly available
on the project website: http://all.rit.edu

1 Introduction

To fill the existing void in accessibility education, we have created a com-
prehensive collection of laboratory activities that are essential to accessibility
education. These labs are collectively referred to as the Accessibility Learning
Labs (ALL). These systematically developed educational accessibility labs have
the primary goals of creating student awareness of the need to create accessi-
ble software, and to inform students about fundamental accessibility concepts.
The labs are easy to integrate into a variety of existing introductory computing
courses (

example 1.1 Computer Science I & II) due to their easy to adopt, self-contained
nature. No special software is required to use any portion of the labs since

∗Copyright is held by the author/owner.

89

they are web-based and able to run on any computer with a reasonably modern
browser web browser.

The tutorial will provide participants with a mechanism to I) Learn about
our provided educational accessibility material, II) Provide feedback and guid-
ance on any necessary modifications to the labs, and III) Share common chal-
lenges and best practices for including accessibility in computing education. No
prior experience from tutorial participants will be required.

1.1 Lab Structure

Each lab addresses at least one accessibility issue and contains: I) Relevant
background information on the examined issue, II) An example app containing
the accessibility problem, III) A process to emulate this accessibility problem
(as closely as possible), IV) Details about how to repair the problem from a
technical perspective, and V) Information from actual people about how this
encountered accessibility issue has impacted their life.

2 Tutorial Session Agenda

Activity 1: Hearing-focused Lab: (30 minutes) This lab instructs par-
ticipants on proper procedures in making software accessible to users who are
Deaf/Hard of Hearing.

Activity 2: Colorblindness-focused Lab: (30 minutes) This lab instructs
participants on proper procedures in making software accessible to users with
colorblindness.

Activity 3: Lab Feedback: (15 minutes) Participants will provide feedback
on the material, and offer guidance to presenters on the future direction of the
labs. This feedback will be incorporated into the design of future labs.

Acknowledgements

This material is based upon work supported by the NSF under grant #1825023.

References

[1] Weishi Shi, Saad Khan, Yasmine El-Glaly, Samuel Malachowsky, Qi Yu,
and Daniel E. Krutz. Experiential learning in computing accessibility edu-
cation. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: Companion Proceedings, ICSE ’20, page 250–251,
New York, NY, USA, 2020. Association for Computing Machinery.

[2] Weishi Shi, Samuel Malachowsky, Yasmine El-Glaly, Qi Yu, and Daniel E.
Krutz. Presenting and evaluating the impact of experiential learning in

90

computing accessibility education. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Software Engineering
Education and Training, ICSE-SEET ’20, page 49–60, New York, NY,
USA, 2020. Association for Computing Machinery. Distinguished Paper
Award.

Presenter Biographies

Saad Khan is the Project Manager and Developer of the project, dedicated to
planning and developing accessibility labs. Saad is a 5th-year Software Engi-
neering Masters student who has led multiple intro CS classes using these labs.
He has also led the development of several of the created labs.
Samuel Malachowsky is the Co-PI of the project that is developing the de-
scribed accessibility labs. Malachowsky is a Sr. Lecturer at RIT and has au-
thored 9 pedagogically focused publications. He holds a Project Management
(PMP) certification and has authored a textbook on team leadership.
Daniel Krutz is the PI of the NSF-funded project [1, 2] that is devoted to
creating the presented labs. Krutz has taught approximately ten different grad-
uate and undergraduate software engineering courses and is the author of over
twelve pedagogical research papers.

1

Computer Science and Robotics Using
Single Board Computers

Conference Tutorial

Kevin McCullen and Michael Walters
Computer Science and Physics Departments

State University of New York College at Plattsburgh
Plattsburgh, NY 12901
kmccu006@plattsburgh.edu

Single Board Computers (SBCs) are a key enabler of the Maker movement
and have found a place in education. The two dominant SBCs in education,
the Arduino and Raspberry Pi, are now commonly used in courses in Engineer-
ing, Computer Science, and Robotics [4, 3, 2, 5]. Their ability to inexpensively
work with sensors, servos, Wifi, Bluetooth, audio, video, and images opens op-
portunities for exciting and engaging projects [1]. New, more powerful and/or
cheaper platforms continue to be added to the SBC landscape. Examples in-
clude the micro:bit, Arduino MKR series, Adafruit Feather, and Teensy.

SBCs are not without challenges for instructors. Most are consumer or
hobbyist grade hardware, product development cycles can be very short leading
to limited lifespans for specific models, documentation can be limited, and the
number of options available can make it difficult to select a path.

These systems also present challenges for students. There are extensive
pools of information available on the internet concerning these devices. How-
ever, it is not always correct or easily understood. Students need to learn to
synthesize various information streams to create a viable solution.

Our tutorial will cover practical aspects of using these systems for educa-
tion. This tutorial is targeted at faculty who are interested in using SBCs, or
who have made their first foray into their use. Some of the key topics to be
discussed include the diversity of SBCs and their relative pros and cons; with
specific attention to price points, configuration and deployment, sensor and
servo compatibility, and the differing programming models used by different
SBCs (for example, full Linux install versus limited resource microcontrollers.)
We will also cover aspects of working with pulse width modulation controlled
servos in both environments, remote control of these systems, audio processing,
and video/image processing using OpenCV.

92

Because of the different strengths of the systems, it is often necessary for
projects to use several SBCs. We will discuss the options for combining SBCs,
techniques for communication between SBCs (for example in a robot system)
and potential pitfalls. The tutorial will also include demonstrations of projects
using a variety of SBCs, with code examples in Circuit Python, Python, and
C.

This is an update and revision of a tutorial given three years ago, updated
to reflect more learning and newer systems that have since become available.

Biography

Dr. Michael Walters is an Associate Professor of and Chair of Physics at SUNY
Plattsburgh. He is in charge of the hardware component of the new Robotics
major at SUNY Plattsburgh. Dr. Walters designed KIF (Keep It Fun); a
robotics learning platform; based on 3-D printed components, Arduino, and
Raspberry Pi. KIF is in its third generation, and is used in introductory and
intermediate robotics laboratories. Dr. Walters mentored a team of students
who competed in the NASA Centennial Challenge: Robotic Sample Return
Challenge, using Raspberry Pis and Arduinos as the central controller, vision
processing, and motion controllers for their rover. He currently is researching
connecting a robot controlled by an Arduino to an Amazon Dot to allow for
voice control of an electric wheelchair. Dr. Walters also works with youth in
informal science education, using 3-D printers and robotics.

Dr. Kevin McCullen is an Associate Professor of Computer Science at
SUNY Plattsburgh. Dr. McCullen has designed and taught a course in Em-
bedded Systems using the Raspberry Pi and the Sense HAT. Additionally, Dr.
McCullen is the recipient of a university grant to use Arduinos and Raspberry
Pi systems for teaching and undergraduate research. Dr. McCullen’s projects
include using an Arduino with sensors for classes in networking, undergradu-
ate research in computer vision using OpenCV, and taking attendance using
Wifi and Bluetooth. Dr. McCullen participates extensively in informal science
education, working with Raspberry Pis and as a judge and advisor for First
Tech Challenge robotics.

Drs Walters and McCullen teach courses in the SUNY Plattsburgh Under-
graduate Robotics major, which has graduated its first class of students. The
major is built on using SBCs and microcontrollers.

93

References

[1] Leah Buechley and Michael Eisenberg. The lilypad arduino: Toward wear-
able engineering for everyone. IEEE Pervasive Computing, 7(2):12–15,
2008.

[2] Jake Rowan Byrne, Katriona O’Sullivan, and Kevin Sullivan. An iot and
wearable technology hackathon for promoting careers in computer science.
IEEE Transactions on Education, 60(1):50–58, 2016.

[3] Kevin McCullen. Teaching embedded systems using the raspberry pi and
sense hat. Journal of Computing Sciences in Colleges, 33(3):148–156, 2018.

[4] Septimiu Mischie. On teaching raspberry pi for undergraduate university
programmes. In 2016 12th IEEE International Symposium on Electronics
and Telecommunications (ISETC), pages 149–153. IEEE, 2016.

[5] M Cristina Rodriguez-Sánchez, Angel Torrado-Carvajal, Joaquin Vaquero,
Susana Borromeo, and Juan A Hernandez-Tamames. An embedded systems
course for engineering students using open-source platforms in wireless sce-
narios. IEEE transactions on education, 59(4):248–254, 2016.

94

Short Modules for Introducing
Heterogeneous Computing∗

Conference Tutorial

David P. Bunde1, Apan Qasem2,
Philip Schielke3

1Knox College
Galesburg, IL 61401

dbunde@knox.edu
2Department of Computer Science

Texas State University
San Marcos, TX 78666

apan@txstate.edu
3Concordia University Texas

Austin, TX 78726
Philip.Schielke@concordia.edu

Abstract

CS faculty have spent the last several years adding parallel computing to their
curricula since essentially all processors sold today have multiple cores. A typ-
ical target system is a multicore processor with identical cores. This is the
configuration for most current desktop and laptop systems, but the technology
continues to evolve and systems are incorporating heterogeneity. Many phone
processors include cores of different sizes so the phone can vary its power
and performance profile over time. Other processors incorporate low-power
modes or instructions for specialized computations. Meanwhile, high-end sys-
tems make heavy use of accelerators such as graphics cards. We are at a stage
where heterogeneous computing concepts should pervade the curriculum rather
than being limited to upper-level courses.

This tutorial motivates heterogeneous parallel programming and
then presents modules that introduce aspects of it such as ener-

∗Copyright is held by the author/owner.

95

gy/performance tradeoffs, SIMD programming, the benefit of mem-
ory locality, processor instruction set design tradeoffs, and CPU
task mapping. Each module uses only a few days of class time and
includes assignments and/or lab exercises which are available on-
line (https://github.com/TeachingUndergradsCHC/modules/). Here
are the modules:

1. The first module shows the challenges and benefits of task mapping on
a heterogeneous system. The module includes a lab to provide students
with hands-on experience running parallel workloads in heterogeneous
environments. It is aimed at CS 2, but also fits in Systems and Parallel
Programming courses.

2. The second module looks at heterogeneity on ARM processors, particu-
larly Thumb mode, a low-power mode with restricted instructions. The
module is based on the Raspberry Pi, a low-cost system aimed at hobby-
ists. It highlights performance/power tradeoffs and is aimed at Computer
Organization.

3. The third module shows how memory locality can improve performance
on a program that uses CUDA to run on a graphics processing unit
(GPU). This module demonstrates heterogeneity resulting from both
CUDA’s SIMD model of computing and the different memory types on
a GPU. It highlights memory locality and is aimed at systems-oriented
courses.

Acknowledgements

This tutorial presents work supported by NSF grants OAC-1829644 & OAC-
1829554.

96

Building and Hacking an Exploitable
WiFi Environment for Your Classroom

– Even for Remote Participants∗

Conference Workshop

Ahmed Ibrahim
University of Pittsburgh

Pittsburgh, PA
aibrahim@pitt.edu

With the widespread of WiFi nowadays, it is important to show students
how WiFi access points can be exploited in practice. The theory behind ex-
ploiting WEP and WPA2 has been available for a number of years. However, it
has not been easy to offer students the opportunity to apply these theories in a
real environment. In this workshop, you will learn how to build and configure
WiFi access points for your students to hack. You will learn how Raspberry
Pis can be used to act as the necessary clients for those access points and you
will have access to the Raspberry Pi scripts and all access point configuration
directions. We will go over setting up a VPN with a Raspberry Pi for each
student to use for attacks. Then, we will discuss the different hacking scenarios
where WEP access points have connected clients versus no connected clients.
In addition, you will get a chance to hack up to four WEP access points in
addition to a WPA2 access point. Note: Participants must have a computer
with at least 25GB of disk space available and VirtualBox installed.

The presenter has a physical environment dedicated to the workshop which
includes WiFi access points. Participants will connect to the presenter’s phys-
ical environment via a tested and reliable VPN (as shown in figure 1). Once a
participant connects to the VPN they will be able to SSH into a Kali Linux
dedicated machine (one machine per participant) which is equipped with all
necessary packages and hardware to engage in the workshop activities within
the sandboxed WiFi environment built for this workshop.

A few days before the workshop, the presenter will email the participants
with links to (a) download the Virtual Machine required for the workshop and

∗Copyright is held by the author/owner.

97

(b) setup their VPN connection such that they can engage in the workshop
remotely. The instructor has offered the described activity in an undergraduate
security course during the Spring 2019, Fall 2019, Spring 2020, and Fall 2020
semesters and received positive feedback about its educational benefit.

Figure 1: WiFi Environment behind the Presenter’s VPN

98

COVID-19 Data Analysis Applied to
Computer Science Courses∗

Faculty Poster

Kehan Gao and Sarah Tasneem
Computer Science

Eastern Connecticut State University
Willimantic, Ct 06226

{gao,tasneems}@easternct.edu

At Eastern Connecticut State University, we include or teach data analysis
in different levels of computer science courses, including our Computer Science
(CS) gateway course CSC180: Fundamentals of Computing, two programming
courses; CSC202: Introduction to Programming and Machine Intelligence and
CSC203: Advanced Programming for Data Science, as well as CSC305: Data
Mining and Applications. In all these courses, students will learn data science
technologies and develop data analysis skills appropriate to the course level. For
example, CSC180 provides students with general concepts of data science and
the role of computer science in data analysis. CSC202 and CSC203 put more
emphasis on programming techniques such as classes, objects, methods, file I/O
and other packages involved. Students will develop skills to apply them to data
processing and analysis. CSC305 explores the entire data mining (or analysis)
process and focuses on stages ranging from data collection and preparation to
data processing and modeling until pattern and knowledge discovery.

As the whole world has been suffering from a pandemic, COVID-19 data
analysis is a fitting project that can be used at different levels of CS courses,
which involve data science. Comparing with other data, COVID-19 data pos-
sesses the following advantages: 1) Data availability: COVID-19 data can be
obtained from many well-known public sources such as CDC [1], JHU [2], etc.
2) Ease of comparison: Many analysis results and data visualization outcomes
have been published based on these common COVID-19 data, so students can
compare their own results with the published results. 3) Practicality: Since
COVID-19 data is real-world data, it provides students with the opportunity
to use the technology and skills learned in the classroom to deal with such dy-
namic and constantly updated datasets and gain benefits. 4) Multi-perception:

∗Copyright is held by the author/owner.

99

this data is multi-dimensional, including information about counties, states,
and countries. Also, it contains information about age, gender and race. Mul-
tiple facets of data allow data analysis to be performed from different angles.

In CSC180, when assigning the COVID-19 data analysis project, we pro-
vided daily new case data of CT, MA, NJ, NY and US in the csv table format.
Students were required to use certain tools (e.g., Python) to show the trend
of new cases in each state and the country and compare differences. To pre-
pare them for the project, students were provided with simple data sets and
program examples. Guidelines were given on how to read formatted data and
display it in a specific graphical representation. In CSC202, we provided stu-
dents with unemployment data [3] (e.g., the insured unemployment rate) of
Northeast states (CT, MA, ME, NH, NJ, NY, PA, RI and VT) and asked
them to discover changes in unemployment during the pandemic last year.
They used tables and graphics to present results and saved them in files and
appropriate directories. In CSC203, a possible data analysis project could be to
create a simple COVID-19 dashboard. The procedure is as follows: 1) Collect
data from trustworthy sources; 2) Clean, select and prepare data according to
the dashboard requirements; 3) Perform data processing, such as using Plotly
to visualize 10 worst-hit states; or using Folium to plot all confirmed cases
(or deaths) on the US map; 4) Use Voilà to convert the Notebook to a stan-
dalone dashboard. In CSC305, possible project topics include “How does the
COVID-19 vaccine affect the number of positive cases?” and “Assess the po-
tential relationship between the number of administered COVID-19 vaccines
and COVID-19 mortality”. Students need to collect and prepare data based on
a specified problem outlines and process the data accordingly. They may spot
certain patterns and interesting trends and draw informative conclusions.

This work aims to share the experience of applying COVID-19 data analysis
to different levels of computer science courses that teach data science. Interested
parties can gain some useful insights from the report.

References

[1] CDC COVID Data Tracker. https://covid.cdc.gov/covid-data-tracker/\#cases\
_casesinlast7days.

[2] COVID-19 Data Repository by the Center for Systems Science and Engineering
(CSSE) at Johns Hopkins University. https://github.com/CSSEGISandData/
COVID-19, 2020.

[3] Employment and Training Administration. https://oui.doleta.gov/unemploy/
claims.asp, May 2020.

100

Cybersecurity Virtual Summer Workshop
for Secondary School Teachers: An

Experience Report∗

Faculty Poster

Sarbani Banerjee and Neal Mazur
Department of Computer Information Systems
State University of New York at Buffalo State

Buffalo, NY 14222
{banerjs,mazurnm}@buffalostate.edu

Throughout the past decade the workforce demands are rising steadily in
the field of cybersecurity, outstripping the supply of skilled workers [6]. Cyber-
security education is the backbone of building strong cybersecurity profession-
als and informed citizens and the need for bringing cybersecurity education for
the K-12 students is rapidly increasing [3, 4]. With the long-term goal of broad-
ening participation in field of cybersecurity, the presenters offered a four-day
virtual summer workshop for Western New York (WNY) teachers at Buffalo
State College in the summer of 2020 [2]. More than 25 middle and high school
teachers primarily from the WNY area attended the workshop.

The workshop curriculum included various topics of cybersecurity such as
‘Cyber Ethics’, ‘Ethical Hacking’, ‘Cyberbullying’, ‘Network Security’, ‘Inter-
net of Things’, ‘Web Security’, ‘Social Engineering’, ‘Data Security and SQL
Injection’, ‘Password Protection and Online Safety’, ‘Cryptography’, ‘Rasp-
berry PI’, ‘Python Programming’ as well as cybersecurity concepts and first
principles [1]. In this poster, we share our curriculum, present data on short-
term impacts, and describe our in-progress work to evaluate the workshop’s
longer-term impacts.

Since the participants in the workshop were all middle and high school
teachers, the curriculum had a focus on material appropriate and important to
their students. A unit on ethical behavior was essential in this regard. Teach-
ers were able to explore and discuss topics of cyberbullying and cyberstalking,
plagiarism and copyright infringement, and the relationship between moral be-
havior online and offline. Technical material such as cryptography was covered

∗Copyright is held by the author/owner.

101

at different levels of sophistication emphasizing examples and unplugged activ-
ities. Raspberry Pi (programmed in Python) was used as platform for demon-
strating cybersecurity concepts which lends itself to many hands-on robotic
and other electronic activities to interest younger students.

Since the cybersecurity skills shortage is reaching widespread proportions,
one way to ensure a larger pipeline in cybersecurity is to train more middle and
high school teachers to not only teach cybersecurity in their schools or integrate
cybersecurity concepts in their classrooms but also to promote cybersecurity
as an attractive career path [5]. To this effect the summer workshop offered
a lengthy ‘Cybersecurity Careers and Awareness’ session with guest speakers
from the industry sharing their experiences in working as cybersecurity profes-
sionals. On the last day of the workshop series the teacher participants shared
Lesson Plans they created based on the cybersecurity topics presented at the
workshop. Participants worked in teams of two preparing lessons during the
first three days of the workshop through Zoom breakout rooms. A major draw-
back associated with virtual conferences is the lack of opportunity to share
experiences and network with other participants. The use of these two person
teams gave the teachers an opportunity to interact more personally with a
colleague. The presentations themselves were a gratifying experience for the
participants since they not only developed cybersecurity lesson plans for their
students but learned from lesson plans and presentations of the other teachers.
Ample time was given following each presentation for discussion, construc-
tive comments, and sharing of experience. There are some benefits associated
with virtual delivery of the workshop. Teachers not only from WNY, but from
all over New York State attended the workshop, including one international
teacher from Turkey. Teachers being able to attend from home gives them
more flexibility concerning their schedule associated with travel and the ability
to revisit the recorded workshop.

A thirty-question survey instrument was developed and administered to
all the participants on the final day of the workshop. This survey question-
naire was designed to assess various components of the workshop including
the effectiveness of the workshop in preparing the participants to teach/coach
cybersecurity in their schools. The findings will be presented in detail in the
poster.

102

References

[1] Cybersecurity concepts and first principles of cybersecurity.
https://cs4hs.buffalostate.edu/sites/cs4hs.buffalostate.edu/files/uploads/
Documents/Summer%20Workshop%20Agenda/Cybersecurity%20First%
20Principles.pdf.

[2] Cybersecurity summer workshop. https://cs4hs.buffalostate.edu/
cybersecurity-summer-workshop.

[3] National initiative for cybersecurity education (nice) cybersecurity work-
force framework. https://www.cisa.gov/nice-cybersecurity-workforce-
framework.

[4] The state of cybersecurity education in k-12 schools. https://cyber.org/
news/state-cybersecurity-education-k-12-schools.

[5] Cybersecurity career paths and progression. https://niccs.cisa.gov/sites/
default/files/documents/pdf/cybersecurity%20career%20paths%20and%
20progressionv2.pdf?trackDocs=cybersecurity%20career%20paths%
20and%20progressionv2.pdf, 2019.

[6] Strategies for building and growing strong cybersecurity teams: Cybersecu-
rity workforce study. https://www.isc2.org/-/media/ISC2/Research/2019-
Cybersecurity-Workforce-Study/ISC2-Cybersecurity-Workforce-Study-
2019, 2019.

103

Exploring Direct Simulation Monte-Carlo
Techniques for Science Applications∗

Faculty Poster

Vladimir V. Riabov
Department of Mathematics and Computer Science

Rivier University
Nashua, NH 03060
vriabov@rivier.edu

The revision of STEM education curricula provides computer-science fac-
ulty with the opportunities of introducing the advanced computing methods
in the courses related to applications in various challenging areas of sciences
and technologies. Even basic background of students in mathematical statis-
tics, theory of probability, and molecular physics could help them in simulating
real physical phenomena in gases and plasmas using Direct Simulation Monte-
Carlo (DSMC) methods. The introduction of these methods to students and
results of their exploration projects focusing on various practical applications
are reviewed in this paper.

The development of the DSMC techniques and their applications for pre-
dicting aerothermodynamics characteristics of space vehicles during flights in
the upper atmospheric layers of planets were widely discussed at numerous
symposia and conferences for the last 60 years. The DSMC methodology and
its implementation in studies of rarefied-gas flows were described in [1, 2, 3].
Samples of computer programs (written in Java, C, FORTRAN, and other
languages) can be found in [1, 2, 3, 4]. These codes were modified by students
and used in their projects for solving various problems in molecular physics,
thermodynamics, and aeronautics.

The DSMC techniques are covered in several CS courses including Discrete
Mathematics, Numerical Methods, System Simulation & Modeling, Software
Engineering, and the Advanced CS Projects. The traditional topics of statisti-
cal analysis and probabilities are covered during the first three classes with the
focus on the importance of the sample sizes and asymptotic analyses. The valid-
ity of Monte-Carlo simulations is studied for the “classical” cases of numerical

∗Copyright is held by the author/owner.

104

estimations of twofold integrals, values of the error function, and surfaces and
volumes of simple-shape bodies. The acquired knowledge and skills are used
by students in mini-case studies of molecular collisions, estimations of trans-
port coefficients in gases [2, 8], structures of shock waves, and aerodynamics of
simple-shape probes [7]. All these cases cannot be solved by applying analytical
or numerical approaches in solving ordinary and/or partial differential equa-
tions that are simply not applicable for studying these molecular phenomena.

In final capstone projects, students investigate relaxation processes in ex-
panding gas jets [9], separation of gas-mixture components in flows near blunt
bodies, the reverse Magnus effect on a rotating cylinder, aerodynamics of
toroidal-shape balloon parachute [5], shock-shock interactions, interference be-
tween bodies in hypersonic flows [10], the bulk viscosity and various energy
relaxation parameters. This last group of studies requires the creative devel-
opment and adaptation of DSMC methods by students in estimating multi-
variable and multi-fold integrals that cannot be solved analytically. The re-
sults of these studies have been presented at conferences and summarized in
the author’s articles [8, 7, 6].

In the course evaluations, students stated that they became deeply engaged
in case studies and project activities through examining the challenging prob-
lems related to the real-world applications of the state-of-the-arts computing
technologies in aeronautics and applied physics.

105

References

[1] Graeme Austin Bird. Molecular gas dynamics. NASA STI/Recon Tech-
nical Report A, 76:40225, 1976.

[2] Graeme Austin Bird. Molecular gas dynamics and the direct simulation of
gas flows. Molecular gas dynamics and the direct simulation of gas flows,
1994.

[3] Graeme Austin Bird. The DMSC Method. CreateSpace Independent Pub-
lishing Platform, 2013.

[4] AV Kashkovskyt. Computational tools for rarefied aerodynamics. Rarefied
gas dynamics: Space science and engineering, page 115, 1992.

[5] James Moss. Dsmc simulations of ballute aerothermodynamics under hy-
personic rarefied conditions. In 38th AIAA Thermophysics Conference,
page 4949, 2005.

[6] Vladimir V Riabov. Numerical and experimental simulation techniques in
hypersonic low-density aerothermodynamics. In 23rd AIAA International
Space Planes and Hypersonic Systems and Technologies Conference.

[7] Vladimir V Riabov. Comparative similarity analysis of hypersonic rarefied
gas flows near simple-shape bodies. Journal of Spacecraft and Rockets,
35(4):424–433, 1998.

[8] Vladimir V Riabov. Gas dynamic equations, transport coefficients, and
effects in nonequilibrium diatomic gas flows. Journal of Thermophysics
and Heat Transfer, 14(3):404–411, 2000.

[9] Vladimir V Riabov. Kinetic phenomena in spherical expanding flows of bi-
nary gas mixtures. Journal of thermophysics and heat transfer, 17(4):526–
533, 2003.

[10] Vladimir V Riabov. Numerical study of interference between simple-shape
bodies in hypersonic flows. Computers & structures, 87(11-12):651–663,
2009.

106

Student-made Online Discrete Math
Drills∗

Lightning Talk

Sebastiaan J. C. Joosten
Department of Computer Science

Dartmouth College, Hanover, NH 03755
Sebastiaan.Joosten@dartmouth.edu

Introduction. This paper presents a set of online Discrete Mathematics ex-
ercises, and describe how they were made. The motivation is threefold: First,
to spread the word about an online environment for doing Discrete Mathe-
matics exercises, in the hope that others might find it useful for their courses.
Second, to describe experiential learning in a Functional Programming class.
Third, to invite feedback on Discrete Mathematics exercises and suggestions
for additional exercises.

Motivation for online Discrete Mathematics exercises. A key way in
which students learn concepts of Discrete Mathematics is by completing prac-
tice exercises. In-person, students can be asked if they practiced, but with the
increased prevalence of remote learning, an online environment was created to
support the following setup: Online practice exercises are graded homework,
students can complete exercises with immediate feedback until they have com-
pleted ten in a row correctly. Either full or no points are awarded and no
manual grading is involved. The environment is integrated with Canvas.

Discrete Mathematics consists of different topics: set-theory, combinatorics,
probability, graphs and numbers. We want basic exercises for all topics. We
asked students taking the Functional Programming course to create them.

Experience with the Functional Programming course. Students learned
Haskell during the first half of the course following the textbook by Richard
Bird [1], as during an earlier iteration of this course. For the second half of
the course, students were divided into seven pairs, and each got to pick one

∗Copyright is held by the author/owner.

107

out of twelve ‘simple’ assignments. These assignments helped students under-
stand the framework within which the exercises were shown. Next, students
got to pick from ‘proof-based’ assignments in fresh groups. These assignments
had students generate a derivation and create a Discrete Mathematics exercise
based on it. For instance, the Discrete Mathematics student can be asked to
put the steps in the right order. Functional Programming students added the
exercises through Git pull-requests as a way of submitting their work. On the
final day of the course, groups presented their work and they could try each
other’s exercises on the departmental server.

The Functional Programming students were enthusiastic about program-
ming something that would actually be used. At the time of writing, student
evaluations for the Functional Programming course have not been completed
yet, and the Discrete Mathematics course has not taken place yet (this will
take place in December and from January to March respectively).

On the online exercise environment. The environment consists of generic
JavaScript and HTML code to render exercises and feedback, and send re-
sponses back to the server. Server-side, the environment is integrated with
Canvas. All code is provided to Functional Programming students together
with a way to run a single-user exercise server locally. The code is available
online at: https://github.com/sjcjoosten/cs30
The application can be tried at: https://cs.dartmouth.edu/~sjc/cs30/

Biography

Sebastiaan Joosten is a Lecturer at Dartmouth. Sebastiaan has a Masters in
Discrete Mathematics from Twente University, a PhD in Computer Science
from Eindhoven University of Technology (both in the Netherlands). He was
previously a PostDoc at the University of Innsbruck (Austria) and an Assis-
tant Professor at Twente University. His research focuses on Automating Cor-
rectness, operating at the boundaries of Logic, Mathematics, and Computer
Science, and he likes bringing his research into the classroom.

References

[1] Richard Bird. Thinking functionally with Haskell. Cambridge University
Press, 2014.

108

Pedagogical Best Practices for Teaching
Foundational Computer Science Courses
in Alignment with Employer Technical

Interviews∗

Panel Discussion

Robert J. Domanski
Director of Higher Education
NYC Tech Talent Pipeline

City of New York
rdomanski@sbs.nyc.gov

1 Abstract

In 2017, New York City Mayor Bill de Blasio’s Tech Talent Pipeline (TTP)
industry partnership launched the "CUNY 2x Tech" initiative – a $20 million
investment into Computer Science programs within the City University of New
York (CUNY). The goals of the initiative were to grow the City’s tech workforce
by doubling the number of tech Bachelors degrees awarded annually by 2022,
increase the employability of such graduates to position them for success in
connecting to full-time jobs in the field at market-rate salaries, and increase
the rate at which the NYC tech industry consistently draws from this pool of
talent in their hiring practices.

While a multi-pronged strategy for achieving these goals has been imple-
mented – which includes the provision of additional faculty lines, industry
adjuncts, academic advisement, career coaching, and a robust internship pro-
gram – industry feedback was gathered highlighting that even strong students
often struggled to pass employer hiring screenings because their foundational
CS knowledge, and the ways in which such knowledge is often assessed in the
classroom, was often misaligned with the types of questions employers ask on
those foundational topics in technical interviews.

∗Copyright is held by the author/owner.

109

To address this challenge, a new model for a Faculty Workshop was de-
veloped to equip CUNY CS faculty with industry insights, pedagogical Best
Practices, and community support so that they could integrate direct career
preparation for students into their teaching methods and instructional design.
The workshop prioritized true interaction among the faculty, with insights and
Best Practices being shared and ideated upon by all participants with their
peers.

Our proposal is to host a panel discussion at CCSCNE 2021 representing
different perspectives of various stakeholders who participated in this "CUNY
2x Tech" Faculty Workshop. After the panel discussion and subsequent Q&A,
we expect the audience of faculty will have renewed ideas for how foundational
CS topics can be pedagogically framed for students in ways that better align
with – and set students up for success in – employers’ technical interviews.

1.1 Panelists

The composition of the panel will include two full-time CUNY CS faculty
members who participated in the workshop, a representative from industry who
can speak in detail about the characteristics of employers’ technical interviews
and perceived student "gaps", and a representative from the City government
who can speak to the workshop’s design considerations.

1.2 Structure

We propose a 60-minute program with four speakers given ten to fifteen minutes
each to speak. The Moderator will summarize panel talks for the audience and
have two to three planned questions to start the audience discussion. Fifteen
to twenty minutes will be provided for questions and answers.

1.3 Postition Statement - Panel

Repeated analyses performed by TTP and its "CUNY 2x Tech" initiative have
highlighted that CUNY CS graduates tend to be fairly strong in foundational
topics, however that strength often fails to translate well in employer-based
assessments on those very same topics. From a pedagogical perspective, there
are many - often subtle - changes that faculty can incorporate into their teach-
ing methods and instructional design to deliver their foundational courses in
ways that not only effectively teach the course content but also align with how
employers assess those same knowledge areas. Often, these are rather subtle,
light-lift approaches such as re-thinking how exam questions are designed and
assessed, or in requiring Code Reviews or whiteboarding activities as part of

110

homework or lab assignments; other times, these can be more significant re-
forms such as re-weighting the value of exams vs. project builds in calculating
final course grades. The "CUNY 2x Tech" Faculty Workshop sought to surface
such pedagogical Best Practices in conjunction with industry input, and our
position is that the resulting insights - to be discussed in this panel - will aid
in positioning students for success in landing full-time employment in the field
after graduation.

2 Panelists

Eva Sofianos is a Lecturer of Computer Science and Deputy Chair at Lehman
College (CUNY). Eva is passionate about technology, loves teaching and be-
lieves in community giving back. Prior to joining Lehman she spent over a
decade developing software solutions at IBM. She worked briefly for Weill Med-
ical Center of Cornell University, as well as some NYC startups, and taught at
the American Museum of Natural History in NY, leading an all girls BridgeUp
STEM Cohort. Some career highlights prior to joining Lehman include co-
authoring an IBM Redbook for Private Clouds, co-founding a technical train-
ing program named Traincube, and co-founding a community known as GDG
Bronx. Since joining Lehman as a full-time faculty member in 2018, she has
acquired multiple grants for curriculum redesign and project-based learning.

Steven Fulakeza is a Lecturer of Computer Science at Lehman College (CUNY),
where he has been a full-time faculty member since 2018. He received his M.S.
degree in Computer Science in 2017 and B.S. degree in Computer Science in
2013, both from Lehman College. Steven has also served as an instructor for
the NYC Tech Talent Pipeline (TTP). His teaching interests include operating
systems, database systems, introduction to networks, programming, and web
development. He received a CUNY Tech Innovations Award in 2016 and City
College of New York Behind the Scenes Information Technology, Excellence,
Achievement and Merit Award in 2017.

Nikolai Avteniev is a Senior Staff Software Engineer at LinkedIn. After grad-
uating with a Bachelor of Science in Computer Science from Brooklyn Col-
lege (CUNY), Nikolai started his professional career in software at JPMorgan
Chase. After earning a Master of Science in Computer Science degree from New
York University (NYU), Nikolai took the experience of building and running
an Agile development team to Real Time Risk Systems where he was one of
the two founding engineers. While there Nikolai leveraged the agile software
engineering values and practices to build a successful software product that
helped hedge funds manage multi-billion-dollar portfolios in near real-time.

111

Next, Nikolai joined a New York City AdTech start-up Intent Media, where
he experienced Agile software development applied in a larger organization
with multiple teams coordinating to deliver new product features at a furious
pace. Currently Nikolai is working at LinkedIn in the NYC (New York City)
engineering office. Nikolai also has developed and taught a Modern Software
Engineering course numerous times as an industry adjunct at the City College
of New York (CUNY) as part of the NYC Tech-in-Residence Corps program.

Robert Domanski, Ph.D., is the Director of Higher Education for the New
York City government’s Tech Talent Pipeline industry partnership. Rob over-
sees the "CUNY 2x Tech" initiative, a $20 million investment by the City to
double the university’s number of tech-related Bachelor’s degrees awarded by
2022. Rob also previously spent 13 years teaching Computer Science at the Col-
lege of Staten Island (CUNY), has certificates in pedagogy and instructional
design, and currently teaches Python and Web Development as an adjunct at
Kean University purely because he loves teaching and working with students.

112

